Patents by Inventor Makoto Murakami

Makoto Murakami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120225021
    Abstract: In the present invention, a method of producing stable bare colloidal gold nanoparticles is disclosed. The nanoparticles can subsequently be subjected to partial or full surface modification. The method comprises preparation of colloidal gold nanoparticles in a liquid by employing a top-down nanofabrication method using bulk gold as a source material. The surface modification of these nanoparticles is carried out by adding one or multiple types of ligands each containing functional groups which exhibit affinity for gold nanoparticle surfaces to produce the conjugates. Because of the high efficiency and excellent stability of the nanoparticles produced by this method, the fabricated gold nanoparticle conjugates can have surface coverage with functional ligands which can be tuned to be any percent value between 0 and 100%.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 6, 2012
    Inventors: Wei QIAN, Makoto MURAKAMI, Yuki ICHIKAWA, Yong CHE
  • Patent number: 8246714
    Abstract: Various embodiments include a method of producing chemically pure and stably dispersed metal and metal-alloy nanoparticle colloids with ultrafast pulsed laser ablation. A method comprises irradiating a metal or metal alloy target submerged in a liquid with ultrashort laser pulses at a high repetition rate, cooling a portion of the liquid that includes an irradiated region, and collecting nanoparticles produced with the laser irradiation and liquid cooling. The method may be implemented with a high repetition rate ultrafast pulsed laser source, an optical system for focusing and moving the pulsed laser beams, a metal or metal alloy target submerged in a liquid, and a liquid circulating system to cool the laser focal volume and collect the nanoparticle products. By controlling various laser parameters, and with optional liquid flow movement, the method provides stable colloids of dispersed metal and metal-alloy nanoparticles. In various embodiments additional stabilizing chemical agents are not required.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: August 21, 2012
    Assignee: IMRA America, Inc.
    Inventors: Bing Liu, Zhendong Hu, Makoto Murakami, Yong Che
  • Publication number: 20120168669
    Abstract: A composite nanoparticle, for example a nanoparticle containing one or a plurality of cores embedded in another material. A composite nanoparticle can be formed by a one step process that includes: ejecting material from a bulk target material using physical energy source, with the bulk target material disposed in a liquid. Composite nanoparticles are formed by cooling at least a portion of the ejected material in the liquid. The composite fine particles may then be collected from the liquid. A product that includes composite fine particles may be formed with laser ablation, and ultrashort laser ablation may be utilized so as to preserve composite nanoparticle stoichiometry. For applications of the composite fine particles, optical properties and/or magnetic properties may be exploited for various applications.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 5, 2012
    Applicant: IMRA AMERICA, INC
    Inventors: Yong CHE, Makoto Murakami, Wei Guo
  • Publication number: 20120162735
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Inventors: Shingo Uchiyama, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Publication number: 20120162737
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Inventors: Shingo Uchiyama, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Publication number: 20120161073
    Abstract: The invention relates to a liquid-crystalline medium based on a mixture of polar compounds having negative dielectric anisotropy, which contains at least one compound of the formula I and at least one compound of the formula II in which R1, R2, R3, R4, ring A, Z1, Z2 and m are as defined in Claim 1, and to the use thereof for an active-matrix display based on the ECB, VA, PS-VA, FFS, PALO or IPS effect.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 28, 2012
    Applicant: Merck Patent Gesellschaft Mit Beschrankter Haftung
    Inventors: Norihiko TANAKA, Makoto Murakami, Shinji Nakajima
  • Publication number: 20120162736
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Inventors: Shingo UCHIYAMA, Johji YAMAGUCHI, Makoto SATO, Kunihiko SASAKURA, Hirofumi MORITA, Shuichiro INAGAKI, Katsuyuki MACHIDA, Hiromu ISHII, Makoto MURAKAMI
  • Publication number: 20120119623
    Abstract: The present invention relates to lead-free piezoelectric ceramic materials comprising crystalline (and preferably perovskite crystalline) structures of the formula Bi1-x(RE)xFeO3, where RE is one or more of La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and 0?x?0.3. The materials are at or near the morphotropic phase boundary and display enhanced piezoelectric and dielectric properties.
    Type: Application
    Filed: February 26, 2009
    Publication date: May 17, 2012
    Applicant: UNIVERSITY OF MARYLAND COLLEGE PARK
    Inventors: Ichiro Takeuchi, Fujino Shigehiro, Makoto Murakami, Sung Hwan Lim, Daisuke Kan
  • Patent number: 8179025
    Abstract: The present invention relates to lead-free piezoelectric ceramic materials comprising crystalline (and preferably perovskite crystalline) structures of the formula Bi1-x(RE)xFeO3, where RE is one or more of La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and 0?x?0.3. The materials are at or near the morphotropic phase boundary and display enhanced piezoelectric and dielectric properties.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: May 15, 2012
    Assignee: University of Maryland College Park
    Inventors: Ichiro Takeuchi, Fujino Shigehiro, Makoto Murakami, Sung Hwan Lim, Daisuke Kan
  • Patent number: 8149489
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: April 3, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fusao Shimokawa, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Patent number: 8113567
    Abstract: A structure of storing a vehicular seat according to one aspect of the invention is constituted by a seat detachably connected to a support base, and a storing space capable of storing the seat detached from the support base. The seat includes an engaging member is fixed to the support base by engaging an engaging portion provided at the support base. The storing space includes a bottom wall, side walls erected to an upper side from two left and right side edges of the bottom wall, and a depth wall erected from a depth edge of the bottom wall to the upper side, and is constituted to slide to store the seat. The seat includes fixing means at predetermined positions inside of the storing space. The fixing means are formed by shapes to slidingly receive and to fix the engaging member of the seat.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: February 14, 2012
    Assignees: Toyota Boshoku Kabushiki Kaisha, Toyota Jidosha Kabushiki Kaisha
    Inventors: Hajime Yamashita, Yoshihide Itou, Fukuo Ogiso, Tamotsu Keinaga, Ko Ishikawa, Hideyuki Kato, Susumu Watanabe, Masaya Kometani, Makoto Murakami
  • Publication number: 20110237215
    Abstract: In a portable phone, a signal received by a GPS antenna passes through a SAW filter and is amplified by an LNA. An addition section adds a cancellation signal generated by a cancellation signal generation section to the amplified signal to cancel noise superimposed on the received signal.
    Type: Application
    Filed: June 6, 2011
    Publication date: September 29, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Makoto MURAKAMI
  • Publication number: 20110194106
    Abstract: An device for Raman spectroscopy such as surface enhanced Raman spectroscopy (SERS) is disclosed herein. Various embodiments may be utilized to prepare a SERS substrate using several deposition techniques such as pulsed laser deposition. Some embodiments optimize coverage, volume, or elements of SERS active metals. The method is a single step inexpensive method for preparing a SERS active substrate. In some embodiments a coating layer underneath the SERS active metals is utilized for additional enhancements.
    Type: Application
    Filed: November 22, 2010
    Publication date: August 11, 2011
    Inventors: Makoto MURAKAMI, Yong Che, Bing Liu, Yuki Ichikawa
  • Publication number: 20110178750
    Abstract: A frequency spectrum analyzing apparatus for performing a frequency spectrum analysis with respect to a detected value of an operating parameter of an internal combustion engine in synchronism with rotation of the engine, is provided. The operating parameter is sampled at predetermined time intervals, and a sampled value is converted to a digital value. Intensities of first and second elements are calculated with respect to a predetermined number of the sampled values. The first elements and second elements respectively correspond to a plurality of frequency components contained in the detected value, and a phase of the second element differs from a phase of the first element by 90 degrees. Frequency component intensities corresponding to the plurality of frequency components are calculated in synchronism with rotation of the engine, using the first element intensities and the second element intensities.
    Type: Application
    Filed: September 9, 2009
    Publication date: July 21, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Natsuko Kitamura, Yoshiaki Akimoto, Jiro Takagi, Atsushi Kurauchi, Masayuki Yoshiiri, Hirotaka Komatsu, Kazuhiko Hirota, Makoto Murakami
  • Patent number: 7979029
    Abstract: In a portable phone, a signal received by a GPS antenna passes through a SAW filter and is amplified by an LNA. An addition section adds a cancellation signal generated by a cancellation signal generation section to the amplified signal to cancel noise superimposed on the received signal.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: July 12, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Makoto Murakami
  • Publication number: 20110133129
    Abstract: A method of tuning thin film properties using pulsed laser deposition (PLD) by tuning laser parameters is provided. Various embodiments may be utilized to tune magnetic properties, conductivity or other physical properties. Some embodiments may improve performance of electrochemical devices, for example a thin film electrode may be fabricated resulting in improved reaction speed of a Li ion battery. By way of example, a material property of thin film is tuned by setting a pulse duration. In some embodiments the numbers of laser pulses and laser pulse energy are other laser parameters which may be utilized to tune the film properties. The materials that can be synthesized using various embodiments of the invention include, but are not limited to, metals and metal oxides.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 9, 2011
    Applicant: IMRA America, Inc.
    Inventors: Makoto MURAKAMI, Zhendong HU, Bing LIU
  • Publication number: 20110123191
    Abstract: A dispersion compensation device includes: an optical branching unit to branch an optical signal to be received; a first dispersion compensator to perform dispersion compensation on one part of the optical signal branched by the optical branching unit with a variable compensation amount; a second dispersion compensator to perform dispersion compensation on another part of the optical signal branched by the optical branching unit; a monitoring unit to monitor the communication quality of an output optical signal of the second dispersion compensator; and a controlling unit to determine the direction of variation in chromatic dispersion of the optical signal based on the direction of variation in communication quality monitored by the monitoring unit and control the compensation amount of the first dispersion compensator based on the result of the determination.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Makoto MURAKAMI, Toshihiro Ohtani
  • Patent number: 7948193
    Abstract: An inexpensive, productivity-enhanced single-phase AC synchronous motor in which stabilized synchronous pull-in can be carried out by suppressing generation of counter torque during a starting operation. Starting operation is performed while the energizing range of motor current is suppressed such that the energizing direction of motor current waveform lagging in a phase behind the output waveform from a detection sensor (17) is switched at at least the zero cross point of the output waveform from the sensor when the number of revolutions of a permanent magnet rotor (1) reaches a predetermined number of revolutions in the vicinity of the synchronous number of revolutions.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: May 24, 2011
    Assignees: Yugen Kaisha K. R & D, Yugen Kaisha Dijianet
    Inventors: Fumito Komatsu, Hideaki Osada, Akira Tooyama, Makoto Murakami
  • Publication number: 20110065405
    Abstract: A multiplication section multiplies a signal output from a GPS antenna by a local oscillation signal generated by a local oscillation signal generation section to down-convert the signal output from the GPS antenna into an intermediate-frequency signal. A sampling circuit section samples a generated signal generated by a portable electronic circuit using a sampling clock signal having a frequency lower than a frequency of the generated signal. An attenuation section generates a cancellation signal by attenuating the sampled signal, and an addition section adds the cancellation signal to the signal output from the multiplication section to cancel in-band noise superimposed on the received signal.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Makoto MURAKAMI
  • Patent number: D640243
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: June 21, 2011
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Home Appliances Corporation
    Inventor: Makoto Murakami