Patents by Inventor Malancha Gupta

Malancha Gupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9551706
    Abstract: The ability to levitate, to separate, and to detect changes in density using diamagnetic particles suspended in solutions containing paramagnetic cations using an inhomogeneous magnetic field is described. The major advantages of this separation device are that: i) it is a simple apparatus that does not require electric power (a set of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) it is compatible with simple optical detection (provided that transparent materials are used to fabricate the containers/channels where separation occurs; iii) it is simple to collect the separated particles for further processing; iv) it does not require magnetic labeling of the particles/materials; and v) it is small, portable.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 24, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Scott T. Phillips, George M. Whitesides, Katherine A. Mirica, Emanuel Carrilho, Andres W. Martinez, Sergey S. Shevkoplyas, Phillip W. Snyder, Raquel Perez-Castillejos, Malancha Gupta, Adam Winkleman, Katherine L. Gudiksen
  • Patent number: 9376516
    Abstract: A porous polymer structure may be formed by cooling a substrate to a temperature at or below a freezing point of a monomer, wherein the monomer is capable of free-radical polymerization; exposing the substrate to an initiator and the monomer, each in a vapor phase, wherein a concentration of the monomer in the vapor phase is above a saturation pressure of the monomer; converting the initiator to a free radical; crystalizing and depositing the monomer on the substrate; and polymerizing at least some of the monomer on the substrate, thereby forming a porous polymer structure on the substrate.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: June 28, 2016
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Malancha Gupta, Scott J. Seidel, Philip J. Kwong
  • Publication number: 20140228463
    Abstract: A porous polymer structure may be formed by cooling a substrate to a temperature at or below a freezing point of a monomer, wherein the monomer is capable of free-radical polymerization; exposing the substrate to an initiator and the monomer, each in a vapor phase, wherein a concentration of the monomer in the vapor phase is above a saturation pressure of the monomer; converting the initiator to a free radical; crystalizing and depositing the monomer on the substrate; and polymerizing at least some of the monomer on the substrate, thereby forming a porous polymer structure on the substrate.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 14, 2014
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Malancha Gupta, Scott J. Seidel, Philip J. Kwong
  • Publication number: 20140030165
    Abstract: A method of coating a substrate, such as a microfluidic device having an interior surface, includes heating a gas including a perfluoroacrylate, a crosslinker and an initiator at a first temperature, maintaining the substrate at a second temperature lower than the first temperature in a reaction chamber, exposing the heated gas to the substrate in the reaction chamber, and reacting the perfluoroacrylate with the initiator and crosslinker to form a polymer coating on the surface of the substrate.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Carson Riche, Noah Malmstadt, Brandon Marin, Malancha Gupta
  • Publication number: 20100285606
    Abstract: The ability to levitate, to separate, and to detect changes in density using diamagnetic particles suspended in solutions containing paramagnetic cations using an inhomogeneous magnetic field is described. The major advantages of this separation device are that: i) it is a simple apparatus that does not require electric power (a set of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) it is compatible with simple optical detection (provided that transparent materials are used to fabricate the containers/channels where separation occurs; iii) it is simple to collect the separated particles for further processing; iv) it does not require magnetic labeling of the particles/materials; and v) it is small, portable.
    Type: Application
    Filed: June 30, 2008
    Publication date: November 11, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Scott T. Phillips, George M. Whitesides, Katherine A. Mirica, Emanuel Carrilho, Andres W. Martinez, Sergey S. Shevkoplyas, Phillip W. Snyder, Raquel Perez-Castillejos, Malancha Gupta, Adam Winkleman, Katherine L. Gudiksen
  • Patent number: 7651760
    Abstract: Disclosed is a versatile method to produce superhydrophobic surfaces by combining electrospinning and initiated chemical vapor deposition (iCVD). A wide variety of surfaces, including electrospun polyester fibers, may be coated by the inventive method. In one embodiment, poly(caprolactone) (PCL) was electrospun and then coated by iCVD with a thin layer of hydrophobic polymerized perfluoroalkyl ethyl methacrylate (PPFEMA). In certain embodiments said coated surfaces exhibit water contact angles of above 150 degrees, oleophobicities of at least Grade-8 and sliding angles of less than 12 degrees (for a water droplet of about 20 mg).
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: January 26, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Gregory C. Rutledge, Malancha Gupta, Minglin Ma, Yu Mao
  • Publication number: 20070237947
    Abstract: Disclosed is a versatile method to produce superhydrophobic surfaces by combining electrospinning and initiated chemical vapor deposition (iCVD). A wide variety of surfaces, including electrospun polyester fibers, may be coated by the inventive method. In one embodiment, poly(caprolactone) (PCL) was electrospun and then coated by iCVD with a thin layer of hydrophobic polymerized perfluoroalkyl ethyl methacrylate (PPFEMA). In certain embodiments said coated surfaces exhibit water contact angles of above 150 degrees, oleophobicities of at least Grade-8 and sliding angles of less than 12 degrees (for a water droplet of about 20 mg).
    Type: Application
    Filed: September 16, 2005
    Publication date: October 11, 2007
    Applicant: Massachusetts Institute of Technology
    Inventors: Karen Gleason, Gregory Rutledge, Malancha Gupta, Minglin Ma, Yu Mao