Patents by Inventor Malcolm Grief

Malcolm Grief has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10745589
    Abstract: Chemical mechanical polishing (CMP) compositions, methods and systems for polish cobalt or cobalt-containing substrates are provided. The CMP compositions comprise ?-alanine, abrasive particles, a salt of phosphate, corrosion inhibitor, oxidizer and water. The cobalt chemical mechanical polishing compositions provide high removal rate of Co as well as very high selectivity of Co film vs. dielectric film, such as TEOS, SixNy (with 1.0<x<3.0, 1.33<y<4.0), low-k, and ultra low-k films.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: August 18, 2020
    Assignee: Versum Materials US, LLC
    Inventors: Xiaobo Shi, Joseph Rose, Timothy Joseph Clore, James Allen Schlueter, Malcolm Grief, Mark Leonard O'Neill
  • Patent number: 10669449
    Abstract: Chemical Mechanical Planarization (CMP) polishing compositions comprising composite particles, such as ceria coated silica particles, offer low dishing, low defects, and high removal rate for polishing oxide films. Chemical Mechanical Planarization (CMP) polishing compositions have shown excellent performance using soft polishing pad.
    Type: Grant
    Filed: September 9, 2018
    Date of Patent: June 2, 2020
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Hongjun Zhou, Jo-Ann Theresa Schwartz, Malcolm Grief, Xiaobo Shi, Krishna P. Murella, Steven Charles Winchester, John Edward Quincy Hughes, Mark Leonard O'Neill, Andrew J. Dodd, Dnyanesh Chandrakant Tamboli, Reinaldo Mario Machado
  • Publication number: 20200115590
    Abstract: Chemical Mechanical Planarization (CMP) polishing compositions comprising composite particles, such as ceria coated silica particles, offer low dishing, low defects, and high removal rate for polishing oxide films. Chemical Mechanical Planarization (CMP) polishing compositions have shown excellent performance using soft polishing pad.
    Type: Application
    Filed: September 9, 2018
    Publication date: April 16, 2020
    Applicant: Versum Materials US, LLC
    Inventors: Hongjun Zhou, Jo-Ann Theresa Schwartz, Malcolm Grief, Xiaobo Shi, Krishna P. Murella, Steven Charles Winchester, John Edward Quincy Hughes, Mark Leonard O'Neill, Andrew J. Dodd, Dnyanesh Chandrakant Tamboli, Reinaldo Mario Machado
  • Patent number: 10109493
    Abstract: Chemical Mechanical Planarization (CMP) polishing compositions comprising composite particles, such as ceria coated silica particles, offer low dishing, low defects, and high removal rate for polishing oxide films. Chemical Mechanical Planarization (CMP) polishing compositions have shown excellent performance using soft polishing pad.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: October 23, 2018
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Hongjun Zhou, Jo-Ann Theresa Schwartz, Malcolm Grief, Xiaobo Shi, Krishna P. Murella, Steven Charles Winchester, John Edward Quincy Hughes, Mark Leonard O'Neill, Andrew J. Dodd, Dnyanesh Chandrakant Tamboli, Reinaldo Mario Machado
  • Patent number: 9978609
    Abstract: Copper chemical mechanical polishing (CMP) formulation, method and system are disclosed. The CMP formulation comprises particulate materials, at least two or more amino acids, oxidizer, corrosion inhibitor, and rest being water.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: May 22, 2018
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, James Allen Schlueter, Joseph Rose, Mark Leonard O'Neill, Malcolm Grief
  • Publication number: 20170362466
    Abstract: Chemical mechanical polishing (CMP) compositions, methods and systems for polish cobalt or cobalt-containing substrates are provided. The CMP compositions comprise ?-alanine, abrasive particles, a salt of phosphate, corrosion inhibitor, oxidizer and water. The cobalt chemical mechanical polishing compositions provide high removal rate of Co as well as very high selectivity of Co film vs. dielectric film, such as TEOS, SixNy (with 1.0<x<3.0, 1.33<y<4.0), low-k, and ultra low-k films.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 21, 2017
    Applicant: Versum Materials US, LLC
    Inventors: Xiaobo Shi, Joseph Rose, Timothy Joseph Clore, James Allen Schlueter, Malcolm Grief, Mark Leonard O'Neill
  • Publication number: 20160314989
    Abstract: Copper chemical mechanical polishing (CMP) formulation, method and system are disclosed. The CMP formulation comprises particulate materials, at least two or more amino acids, oxidizer, corrosion inhibitor, and rest being water.
    Type: Application
    Filed: January 20, 2016
    Publication date: October 27, 2016
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Xiaobo Shi, James Allen Schlueter, Joseph Rose, Mark Leonard O'Neill, Malcolm Grief
  • Publication number: 20160200944
    Abstract: Chemical Mechanical Planarization (CMP) polishing compositions comprising composite particles, such as ceria coated silica particles, offer low dishing, low defects, and high removal rate for polishing oxide films. Chemical Mechanical Planarization (CMP) polishing compositions have shown excellent performance using soft polishing pad.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 14, 2016
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Hongjun Zhou, Jo-Ann Theresa Schwartz, Malcolm Grief, Xiaobo Shi, Krishna P. Murella, Steven Charles Winchester, John Edward Quincy Hughes, Mark Leonard O'Neill, Andrew J. Dodd, Dnyanesh Chandrakant Tamboli, Reinaldo Mario Machado
  • Publication number: 20160122590
    Abstract: Slurries and associated methods and systems for the chemical mechanical planarization (CMP) of tungsten-containing films on semiconductor wafers are described. The slurries comprise abrasive particles, activator-containing particles, peroxygen oxidizer, pH adjustor, and the remaining being water. The slurries have a pH in the range of 4 to 10; preferably 5 to 9; more preferably 6 to 8.
    Type: Application
    Filed: October 15, 2015
    Publication date: May 5, 2016
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Blake J. Lew, Krishna P. Murella, Malcolm Grief, Xiaobo Shi, Dnyanesh Chandrakant Tamboli, Mark Leonard O'Neill
  • Patent number: 7330036
    Abstract: An engagement probe for engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: February 12, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Malcolm Grief
  • Patent number: 7116118
    Abstract: A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Malcolm Grief, Gurtej S. Sandhu
  • Patent number: 7098475
    Abstract: A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: August 29, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Malcolm Grief, Gurtej S. Sandhu
  • Patent number: 7026835
    Abstract: An exemplary engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate is described. Constructions are disclosed for testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: April 11, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Malcolm Grief, Gurtej S. Sandhu
  • Patent number: 6960115
    Abstract: The invention is a method and apparatus for planarizing a wafer. Discrete measurements are taken across the surface of the wafer at a desired spatial density. The measurements may be generated using a flash lamp to reflect a light signal off the surface of the wafer with a spectrometer analyzing the reflected light. A plurality of probes may be used at different locations to shorten the time necessary for taking measurements across the full front surface of the wafer and for allowing a plurality of areas to be sampled substantially simultaneously. A control system receives the measurements and their corresponding locations. The control system is then able to analyze the data looking for areas or bands on the front surface of the wafer that need an increase or decrease in material removal rate. The control system is then able to adjust one or more planarization parameters to improve the process for the current wafer or for future wafers.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: November 1, 2005
    Assignee: SpeedFam-IPEC Corporation
    Inventors: Matthew Weldon, Thomas Laursen, Malcolm Grief, Paul Holzapfel, Mark A. Meloni, Robert Eaton
  • Patent number: 6833727
    Abstract: A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conducive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: December 21, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Malcolm Grief, Gurtej S. Sandhu
  • Publication number: 20040207421
    Abstract: A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
    Type: Application
    Filed: March 17, 2004
    Publication date: October 21, 2004
    Inventors: Warren M. Farnworth, Malcolm Grief, Gurtej S. Sandhu
  • Patent number: 6805613
    Abstract: The invention is a method and apparatus for planarizing a wafer. Discrete measurements are taken across the surface of the wafer at a desired spatial density. The measurements may be generated using a flash lamp to reflect a light signal off the surface of the wafer with a spectrometer analyzing the reflected light. A plurality of probes may be used at different locations to shorten the time necessary for taking measurements across the full front surface of the wafer and for allowing a plurality of areas to be sampled substantially simultaneously. A control system receives the measurements and their corresponding locations. The control system is then able to analyze the data looking for areas or bands on the front surface of the wafer that need an increase or decrease in material removal rate. The control system is then able to adjust one or more planarization parameters to improve the process for the current wafer or for future wafers.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: October 19, 2004
    Assignee: SpeedFam-IPEC Corporation
    Inventors: Matthew Weldon, Thomas Laursen, Malcolm Grief, Paul Holzapfel, Mark A. Meloni, Robert Eaton
  • Publication number: 20040174178
    Abstract: A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
    Type: Application
    Filed: March 17, 2004
    Publication date: September 9, 2004
    Inventors: Warren M. Farnworth, Malcolm Grief, Gurtej S. Sandhu
  • Publication number: 20040095158
    Abstract: A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
    Type: Application
    Filed: November 7, 2003
    Publication date: May 20, 2004
    Inventors: Warren M. Farnworth, Malcolm Grief, Gurtej S. Sandhu
  • Publication number: 20040038624
    Abstract: The invention is a method and apparatus for planarizing a wafer. Discrete measurements are taken across the surface of the wafer at a desired spatial density. The measurements may be generated using a flash lamp to reflect a light signal off the surface of the wafer with a spectrometer analyzing the reflected light. A plurality of probes may be used at different locations to shorten the time necessary for taking measurements across the full front surface of the wafer and for allowing a plurality of areas to be sampled substantially simultaneously. A control system receives the measurements and their corresponding locations. The control system is then able to analyze the data looking for areas or bands on the front surface of the wafer that need an increase or decrease in material removal rate. The control system is then able to adjust one or more planarization parameters to improve the process for the current wafer or for future wafers.
    Type: Application
    Filed: August 22, 2003
    Publication date: February 26, 2004
    Inventors: Matthew Weldon, Thomas Laursen, Malcolm Grief, Paul Holzapfel, Mark A. Meloni, Robert Eaton