Patents by Inventor Malgorzata Jurczak

Malgorzata Jurczak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10256403
    Abstract: The present disclosure relates generally to Hf-comprising materials for use in, for example, the insulator of a RRAM device, and to methods for making such materials. In one aspect, the disclosure provides a method for the manufacture of a layer of material over a substrate, said method including a) providing a substrate, and b) depositing a layer of material on said substrate via ALD at a temperature of from 250 to 500° C., said depositing step comprising: at least one HfX4 pulse, and at least one trimethyl-aluminum (TMA) pulse, wherein X is a halogen selected from Cl, Br, I and F and is preferably Cl.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: April 9, 2019
    Assignee: IMEC
    Inventors: Christoph Adelmann, Malgorzata Jurczak
  • Patent number: 9786795
    Abstract: The disclosed technology generally relates to semiconductor devices and more particularly to selector devices for memory devices having a resistance switching element, particularly resistive random access memory (RRAM) devices. In one aspect, a selector device includes a first barrier structure comprising a first metal and a first semiconductor or a first low bandgap dielectric material, and a second barrier structure comprising a second metal and a second semiconductor or a second low bandgap dielectric material. The selector device additionally includes an insulator interposed between the first semiconductor or the first low bandgap dielectric material and the second semiconductor or the second low bandgap dielectric material. The first barrier structure, the insulator, and the second barrier structure are stacked to form a metal/semiconductor or low bandgap dielectric/insulator/semiconductor or low bandgap dielectric/metal structure.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: October 10, 2017
    Assignees: IMEC VZW, Katholieke Universiteit Leuven
    Inventors: Bogdan Govoreanu, Christoph Adelmann, Leqi Zhang, Malgorzata Jurczak
  • Publication number: 20160336511
    Abstract: The present disclosure relates generally to Hf-comprising materials for use in, for example, the insulator of a RRAM device, and to methods for making such materials. In one aspect, the disclosure provides a method for the manufacture of a layer of material over a substrate, said method including a) providing a substrate, and b) depositing a layer of material on said substrate via ALD at a temperature of from 250 to 500° C., said depositing step comprising: at least one HfX4 pulse, and at least one trimethyl-aluminum (TMA) pulse, wherein X is a halogen selected from Cl, Br, I and F and is preferably Cl.
    Type: Application
    Filed: July 27, 2016
    Publication date: November 17, 2016
    Applicant: IMEC
    Inventors: Christoph Adelmann, Malgorzata Jurczak
  • Patent number: 9437817
    Abstract: The present disclosure relates generally to Hf-comprising materials for use in, for example, the insulator of a RRAM device, and to methods for making such materials. In one aspect, the disclosure provides a method for the manufacture of a layer of material over a substrate, said method including a) providing a substrate, and b) depositing a layer of material on said substrate via ALD at a temperature of from 250 to 500° C., said depositing step comprising: at least one HfX4 pulse, and at least one trimethyl-aluminum (TMA) pulse, wherein X is a halogen selected from Cl, Br, I and F and is preferably Cl.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: September 6, 2016
    Assignee: IMEC
    Inventors: Christoph Adelmann, Malgorzata Jurczak
  • Publication number: 20150097187
    Abstract: The disclosed technology generally relates to semiconductor devices and more particularly to selector devices for memory devices having a resistance switching element, particularly resistive random access memory (RRAM) devices. In one aspect, a selector device includes a first barrier structure comprising a first metal and a first semiconductor or a first low bandgap dielectric material, and a second barrier structure comprising a second metal and a second semiconductor or a second low bandgap dielectric material. The selector device additionally includes an insulator interposed between the first semiconductor or the first low bandgap dielectric material and the second semiconductor or the second low bandgap dielectric material. The first barrier structure, the insulator, and the second barrier structure are stacked to form a metal/semiconductor or low bandgap dielectric/insulator/semiconductor or low bandgap dielectric/metal structure.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 9, 2015
    Inventors: Bogdan GOVOREANU, Christoph ADELMANN, Leqi ZHANG, Malgorzata JURCZAK
  • Publication number: 20140034894
    Abstract: The present disclosure relates generally to Hf-comprising materials for use in, for example, the insulator of a RRAM device, and to methods for making such materials. In one aspect, the disclosure provides a method for the manufacture of a layer of material over a substrate, said method including a) providing a substrate, and b) depositing a layer of material on said substrate via ALD at a temperature of from 250 to 500° C., said depositing step comprising: at least one HfX4 pulse, and at least one trimethyl-aluminum (TMA) pulse, wherein X is a halogen selected from Cl, Br, I and F and is preferably Cl.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 6, 2014
    Applicant: IMEC
    Inventors: Christoph Adelmann, Malgorzata Jurczak
  • Patent number: 8391059
    Abstract: Multi-gate metal-oxide-semiconductor (MOS) transistors and methods of operating such multi-gate MOS transistors are disclosed. In one embodiment, the multi-gate MOS transistor comprises a first gate associated with a first body factor and comprising a first gate electrode for applying a first gate voltage, and a second gate associated with a second body factor greater than or equal to the first body factor and comprising a second gate electrode for applying a second gate voltage. The multi-gate MOS transistor further comprises a body of semiconductor material between the first dielectric layer and the second dielectric layer, where the semiconductor body comprises a first channel region located close to the first dielectric layer and a second channel region located close to the second dielectric layer. The multi-gate MOS transistor still further comprises a source region and a drain region each having a conductivity type different from a conductivity type of the body.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: March 5, 2013
    Assignee: IMEC
    Inventors: Zhichao Lu, Nadine Collaert, Marc Aoulaiche, Malgorzata Jurczak
  • Publication number: 20110317486
    Abstract: Multi-gate metal-oxide-semiconductor (MOS) transistors and methods of operating such multi-gate MOS transistors are disclosed. In one embodiment, the multi-gate MOS transistor comprises a first gate associated with a first body factor and comprising a first gate electrode for applying a first gate voltage, and a second gate associated with a second body factor greater than or equal to the first body factor and comprising a second gate electrode for applying a second gate voltage. The multi-gate MOS transistor further comprises a body of semiconductor material between the first dielectric layer and the second dielectric layer, where the semiconductor body comprises a first channel region located close to the first dielectric layer and a second channel region located close to the second dielectric layer. The multi-gate MOS transistor still further comprises a source region and a drain region each having a conductivity type different from a conductivity type of the body.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 29, 2011
    Applicant: IMEC
    Inventors: Zhichao Lu, Nadine Collaert, Marc Aoulaiche, Malgorzata Jurczak
  • Patent number: 7494902
    Abstract: A method is disclosed for relaxing strain in a multi-gate device, the method comprising providing a substrate with a strained material, patterning a plurality of fins in the strained material, defining a first region comprising at least one fin, defining a second region comprising at least one fin, providing a diffusion barrier layer on the first region, performing a hydrogen anneal such that the strain in the second region is relaxed.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: February 24, 2009
    Assignee: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventors: Malgorzata Jurczak, Rita Rooyackers, Nadine Collaert
  • Patent number: 7396736
    Abstract: A magnetic sensor includes a thin deformable membrane made of a conductive material forming a first plate of a capacitor which conducts an electric current therethrough. A second capacitor plate of the capacitor includes a doped region of a semiconductor substrate. A layer of a gaseous dielectric separates the two plates. The membrane deforms due to the effect of the Lorentz force generated by a magnetic field lying in the plane of the membrane and perpendicular to the lines of current being conducted therethrough. In addition, a process for fabricating this magnetic sensor is also provided as well as a device for measuring a magnetic field using the magnetic sensor.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: July 8, 2008
    Assignee: STMicroelectronics SA
    Inventors: Hervé Jaouen, Thomas Skotnicki, Malgorzata Jurczak
  • Publication number: 20070298549
    Abstract: A method is disclosed for relaxing strain in a multi-gate device, the method comprising providing a substrate with a strained material, patterning a plurality of fins in the strained material, defining a first region comprising at least one fin, defining a second region comprising at least one fin, providing a diffusion barrier layer on the first region, performing a hydrogen anneal such that the strain in the second region is relaxed.
    Type: Application
    Filed: June 22, 2007
    Publication date: December 27, 2007
    Applicant: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventors: Malgorzata Jurczak, Rita Rooyackers, Nadine Collaert
  • Patent number: 7224015
    Abstract: The invention concerns a method which consists in forming on a substrate (1) coated with a dielectric material layer (3) provided with a window (3a), a stack of successive layers alternately of germanium or SiGe alloy (4, 6, 8) and polycrystalline silicon (5, 7, 9); selective partial elimination of the germanium or SiGe alloy layers, to form an tree-like structure; forming a thin layer of dielectric material (10) on the tree-like structure; and coating the tree-like structure with polycrystalline silicon (11). The invention is useful for making dynamic random-access memories.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: May 29, 2007
    Assignee: STMicroelectronics SA
    Inventors: Thomas Skotnicki, Malgorzata Jurczak, Catherine Mallardeau
  • Patent number: 7038285
    Abstract: A magnetic sensor includes a thin deformable membrane made of a conductive material forming a first plate of a capacitor which conducts an electric current therethrough. A second capacitor plate of the capacitor includes a doped region of a semiconductor substrate. A layer of a gaseous dielectric separates the two plates. The membrane deforms due to the effect of the Lorentz force generated by a magnetic field lying in the plane of the membrane and perpendicular to the lines of current being conducted therethrough. In addition, a process for fabricating this magnetic sensor is also provided as well as a device for measuring a magnetic field using the magnetic sensor.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: May 2, 2006
    Assignee: STMicroelectronics SA
    Inventors: Hervé Jaouen, Thomas Skotnicki, Malgorzata Jurczak
  • Publication number: 20060001113
    Abstract: A magnetic sensor includes a thin deformable membrane made of a conductive material forming a first plate of a capacitor which conducts an electric current therethrough. A second capacitor plate of the capacitor includes a doped region of a semiconductor substrate. A layer of a gaseous dielectric separates the two plates. The membrane deforms due to the effect of the Lorentz force generated by a magnetic field lying in the plane of the membrane and perpendicular to the lines of current being conducted therethrough. In addition, a process for fabricating this magnetic sensor is also provided as well as a device for measuring a magnetic field using the magnetic sensor.
    Type: Application
    Filed: August 29, 2005
    Publication date: January 5, 2006
    Applicant: STMicroelectronics SA
    Inventors: Herve Jaouen, Thomas Skotnicki, Malgorzata Jurczak
  • Patent number: 6855605
    Abstract: A method of forming layers, in the same device material, with different thickness or layer height in a semiconductor device comprises forming device material layer or gate electrode layer disposable parts in selected regions of the device layer. The disposable parts can be formed by doping the selected regions to the desired depth d. The as-deposited thickness t of this device layer can be adjusted or modulated after the patterning of the individual devices by removing the disposable parts.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: February 15, 2005
    Assignee: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Malgorzata Jurczak, Rita Rooyackers, Emmanuel Augendre, Goncal Badenes
  • Patent number: 6727186
    Abstract: A method of fabricating an SON structure semiconductor device is described. There is formed, on a silicon substrate, a stack of layers comprising first and second successive combinations. Each successive combination has a bottom silicon-germanium alloy (Site) layer and a top silicon layer. In a conventional way, a gate dielectric layer, a gate, spacers, source and drain regions, and an external passivating layer are formed by ionic implantation. A vertical hole is formed in the gate as far as the bottom Site layer to etch a part of the Site layers to form tunnels. The walls of the hole and the tunnels are then internally passivated so that the tunnels can remain empty or be filled.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: April 27, 2004
    Assignee: France Télécom
    Inventors: Thomas Skotnicki, Malgorzata Jurczak
  • Patent number: 6713356
    Abstract: A method of fabricating a semiconductor device consisting of a silicon substrate on which is formed a stack of layers is described. The stack may have successively at least one first and one second combination. Each combination may consist, with reference to the substrate, of a thin bottom SiGe layer and a thin top silicon layer. A thin silicon dioxide film (18) is formed on the thin top silicon layer of the second combination so that the layer concerned supports the layers of the stack on at least two opposite lateral sides of the stack. Successive selective lateral etching of the SiGe layers is then carried out to form tunnels which are filled with a dielectric material.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: March 30, 2004
    Assignee: France Télécom
    Inventors: Thomas Skotnicki, Malgorzata Jurczak
  • Patent number: 6670686
    Abstract: A transmitter or receiver includes several transducers formed opposite an aperture in a package. Each transducer includes a deformable semiconductor membrane that is capable of conducting current. The membrane is separated from a substrate zone by a cavity. This allows the membrane to deform due to the effect of an acoustic pressure or of a Lorenz force.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: December 30, 2003
    Assignee: STMicroelectronics SA
    Inventors: Hervé Jaouen, Thomas Skotnicki, Malgorzata Jurczak
  • Patent number: 6607968
    Abstract: A method for making a silicon substrate having a buried thin silicon oxide film is described. The method consists of: a) producing a first element having a first silicon body whereof the main surface is coated, in succession, with a buffer layer of germanium, or of an alloy of germanium and silicon, and with a thin silicon film; b) producing a second element, having a silicon body whereof a main surface is coated with a thin silicon oxide film; c) linking the first element with the second element such that the thin silicon film of the first element is in contact with the thin silicon oxide film of the second element; and d) eliminating the buffer layer to recuperate the silicon substrate having a buried thin silicon oxide film and a reusable silicon substrate. The method may be useful in making microelectronic devices such as CMOS and MOSFET devices.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: August 19, 2003
    Assignee: France Telecom
    Inventors: Malgorzata Jurczak, Thomas Skotnicki
  • Patent number: RE41841
    Abstract: A method for making a silicon substrate having a buried thin silicon oxide film is described. The method consists of: a) producing a first element having a first silicon body whereof the main surface is coated, in succession, with a buffer layer of germanium, or of an alloy of germanium and silicon, and with a thin silicon film; b) producing a second element, having a silicon body whereof a main surface is coated with a thin silicon oxide film; c) linking the first element with the second element such that the thin silicon film of the first element is in contact with the thin silicon oxide film of the second element; and d) eliminating the buffer layer to recuperate the silicon substrate having a buried thin silicon oxide film and a reusable silicon substrate. The method may be useful in making microelectronic devices such as CMOS and MOSFET devices.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: October 19, 2010
    Inventors: Malgorzata Jurczak, Thomas Skotnicki