Patents by Inventor Mamoru Kudo

Mamoru Kudo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7730366
    Abstract: In a digital PLL system, instead of measuring a binarized playback RF signal with a high frequency clock, pulse-length data is generated by using N phase clocks (for example, 16 phase clocks). The pulse-length data is then counted with a virtual channel clock so as to extract run-length data. In this digital PLL system, the number of changing points of an asynchronous signal during an interval between adjacent clocks of the N phase clocks is detected so as to determine phase errors from the detected number of changing points. Phase errors are also determined from the timing relationship between changing points of a signal synchronized with the N phase clocks and each clock of the N phase clocks.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: June 1, 2010
    Assignee: Sony Corporation
    Inventors: Shinobu Nakamura, Mamoru Kudo, Satoru Ooshima, Jun Yamane, Hirofumi Shimizu
  • Patent number: 7578676
    Abstract: A semiconductor device includes a first plate member having a circuit surface on which a circuit is provided, a second plate member having a circuit surface on which a circuit is provided, a plurality of first flat plates disposed on the circuit surface of the first plate member, a first communicating section disposed on the circuit surface of the first plate member, a plurality of second flat plates disposed on the circuit surface of the second plate member, and a second communicating section disposed on the circuit surface of the second plate member. The first plate member and the second plate member are arranged so that a surface of the first plate member opposite to the circuit surface faces a surface of the second plate member opposite to the circuit surface.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: August 25, 2009
    Assignee: Sony Corporation
    Inventors: Shunichi Sukegawa, Kenichi Shigenami, Mamoru Kudo
  • Patent number: 7554186
    Abstract: A semiconductor device includes a first semiconductor package, a second semiconductor package. The first semiconductor package includes a first semiconductor package base having a first cavity formed therein, a first mount component mounted in the first cavity, and a first magnet disposed on the first semiconductor package base. The second semiconductor package includes a second semiconductor package base having a second cavity formed therein, a second mount component mounted in the second cavity, and a second magnet disposed on the second semiconductor package base so as to adsorb the first magnet. The first semiconductor package and the second semiconductor package are stacked by an adsorption of magnetic force between the first magnet and the second magnet.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: June 30, 2009
    Assignee: Sony Corporation
    Inventors: Mamoru Kudo, Kenichi Shigenami, Shunichi Sukegawa
  • Publication number: 20080315386
    Abstract: A semiconductor device includes a first semiconductor package, a second semiconductor package. The first semiconductor package includes a first semiconductor package base having a first cavity formed therein, a first mount component mounted in the first cavity, and a first magnet disposed on the first semiconductor package base. The second semiconductor package includes a second semiconductor package base having a second cavity formed therein, a second mount component mounted in the second cavity, and a second magnet disposed on the second semiconductor package base so as to adsorb the first magnet. The first semiconductor package and the second semiconductor package are stacked by an adsorption of magnetic force between the first magnet and the second magnet.
    Type: Application
    Filed: April 28, 2008
    Publication date: December 25, 2008
    Applicant: Sony Corporation
    Inventors: Mamoru KUDO, Kenichi Shigenami, Shunichi Sukegawa
  • Patent number: 7469367
    Abstract: In a digital PLL system, instead of measuring a binarized playback RF signal with a high frequency clock, pulse-length data is generated by using N phase clocks (for example, 16 phase clocks). The pulse-length data is then run-length counted with a virtual channel clock so as to extract data. In this digital PLL system, the number of changing points of an asynchronous signal during an interval between adjacent clocks of the N phase clocks is detected so as to determine phase errors from the detected number of changing points. Phase errors are also determined from the timing relationship between changing points of a signal synchronized with the N phase clocks and each clock of the N phase clocks.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: December 23, 2008
    Assignee: Sony Corporation
    Inventors: Shinobu Nakamura, Mamoru Kudo, Satoru Ooshima, Jun Yamane, Hirofumi Shimizu
  • Publication number: 20080188096
    Abstract: A semiconductor device includes a first plate member having a circuit surface on which a circuit is provided, a second plate member having a circuit surface on which a circuit is provided, a plurality of first flat plates disposed on the circuit surface of the first plate member, a first communicating section disposed on the circuit surface of the first plate member, a plurality of second flat plates disposed on the circuit surface of the second plate member, and a second communicating section disposed on the circuit surface of the second plate member. The first plate member and the second plate member are arranged so that a surface of the first plate member opposite to the circuit surface faces a surface of the second plate member opposite to the circuit surface.
    Type: Application
    Filed: April 1, 2008
    Publication date: August 7, 2008
    Applicant: SONY CORPORATION
    Inventors: Shunichi SUKEGAWA, Kenichi SHIGENAMI, Mamoru KUDO
  • Patent number: 7351068
    Abstract: A semiconductor device includes a first plate member having a circuit surface on which a circuit is provided, a second plate member having a circuit surface on which a circuit is provided, a plurality of first flat plates disposed on the circuit surface of the first plate member, a first communicating section disposed on the circuit surface of the first plate member, a plurality of second flat plates disposed on the circuit surface of the second plate member, and a second communicating section disposed on the circuit surface of the second plate member. The first plate member and the second plate member are arranged so that a surface of the first plate member opposite to the circuit surface faces a surface of the second plate member opposite to the circuit surface.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: April 1, 2008
    Assignee: Sony Corporation
    Inventors: Shunichi Sukegawa, Kenichi Shigenami, Mamoru Kudo
  • Patent number: 7342986
    Abstract: A phase-locked-loop device includes a clock generator for generating a reference clock based on a binarized playback signal and a frequency of run-length data and for generating N-phase clocks using the reference clock, a pulse-length measuring device for measuring a pulse length of the binarized playback signal using the N-phase clocks to output pulse-length data, and a run-length-data extracting device for counting the pulse-length data based on a virtual channel clock to extract run-length data. Pulse-length data is generated using the N-phase clocks (e.g., 16-phase clocks). The pulse-length data is counted based on the virtual channel clock to extract run-length data. Thus, it is not needed to generate a high-frequency clock, and the operating frequency is maintained sufficiently low.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: March 11, 2008
    Assignee: Sony Corporation
    Inventors: Shinobu Nakamura, Mamoru Kudo, Satoru Ooshima, Jun Yamane, Hirofumi Shimizu
  • Patent number: 7315968
    Abstract: In a digital PLL system, instead of measuring a binarized playback RF signal with a high frequency clock, pulse-length data is generated by using N phase clocks (for example, 16 phase clocks). The pulse-length data is then counted with a virtual channel clock so as to extract run-length data. In this digital PLL system, the number of changing points of an asynchronous signal during an interval between adjacent clocks of the N phase clocks is detected so as to determine phase errors from the detected number of changing points. Phase errors are also determined from the timing relationship between changing points of a signal synchronized with the N phase clocks and each clock of the N phase clocks.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: January 1, 2008
    Assignee: Sony Corporation
    Inventors: Shinobu Nakamura, Mamoru Kudo, Satoru Ooshima, Jun Yamane, Hirofumi Shimizu
  • Publication number: 20070184677
    Abstract: A semiconductor device includes a first plate member having a circuit surface on which a circuit is provided, a second plate member having a circuit surface on which a circuit is provided, a plurality of first flat plates disposed on the circuit surface of the first plate member, a first communicating section disposed on the circuit surface of the first plate member, a plurality of second flat plates disposed on the circuit surface of the second plate member, and a second communicating section disposed on the circuit surface of the second plate member. The first plate member and the second plate member are arranged so that a surface of the first plate member opposite to the circuit surface faces a surface of the second plate member opposite to the circuit surface.
    Type: Application
    Filed: January 26, 2007
    Publication date: August 9, 2007
    Applicant: SONY CORPORATION
    Inventors: Shunichi SUKEGAWA, Kenichi Shigenami, Mamoru Kudo
  • Publication number: 20070094549
    Abstract: In a digital PLL system, instead of measuring a binarized playback RF signal with a high frequency clock, pulse-length data is generated by using N phase clocks (for example, 16 phase clocks). The pulse-length data is then counted with a virtual channel clock so as to extract run-length data. In this digital PLL system, the number of changing points of an asynchronous signal during an interval between adjacent clocks of the N phase clocks is detected so as to determine phase errors from the detected number of changing points. Phase errors are also determined from the timing relationship between changing points of a signal synchronized with the N phase clocks and each clock of the N phase clocks.
    Type: Application
    Filed: December 4, 2006
    Publication date: April 26, 2007
    Inventors: Shinobu Nakamura, Mamoru Kudo, Satoru Ooshima, Jun Yamane, Hirofumi Shimizu
  • Publication number: 20070088992
    Abstract: In a digital PLL system, instead of measuring a binarized playback RF signal with a high frequency clock, pulse-length data is generated by using N phase clocks (for example, 16 phase clocks). The pulse-length data is then counted with a virtual channel clock so as to extract run-length data. In this digital PLL system, the number of changing points of an asynchronous signal during an interval between adjacent clocks of the N phase clocks is detected so as to determine phase errors from the detected number of changing points. Phase errors are also determined from the timing relationship between changing points of a signal synchronized with the N phase clocks and each clock of the N phase clocks.
    Type: Application
    Filed: December 4, 2006
    Publication date: April 19, 2007
    Inventors: Shinobu Nakamura, Mamoru Kudo, Satoru Ooshima, Jun Yamane, Hirofumi Shimizu
  • Publication number: 20060098541
    Abstract: Redundancy of data recorded on a CD is lowered. For example, a bit pattern of coupling bits to be recorded on CD is determined in accordance with sub data. The coupling bits whose bit pattern is determined in this manner are inserted in recorded/encoded audio data (and subcodes) at predetermined positions. A code string obtained in this manner is recorded on a recording medium. The sub data can therefore be recorded by embedding it in the coupling bits which are essentially not related to data.
    Type: Application
    Filed: July 4, 2003
    Publication date: May 11, 2006
    Applicant: Sony Corporation
    Inventor: Mamoru Kudo
  • Patent number: 6992958
    Abstract: In PLL circuits for reproducing a channel clock in synchronism with data read from a disk-shaped recording medium driven for rotation, the frequency dividing ratio of frequency dividers provided in desired signal paths is made changeable according to the reproduced signal format of a CD reproduced signal or a DVD reproduced signal, for example. Although the frequency of the channel clock in synchronism with the reproduced signal differs in different signal formats, the above configuration makes it possible to reproduce the channel clock properly in accordance with a plurality of signal formats only by the operation of changing the frequency dividing ratio in a PLL circuit.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: January 31, 2006
    Assignee: Sony Corporation
    Inventors: Mamoru Kudo, Shinobu Nakamura
  • Publication number: 20050022076
    Abstract: In a digital PLL system, instead of measuring a binarized playback RF signal with a high frequency clock, pulse-length data is generated by using N phase clocks (for example, 16 phase clocks). The pulse-length data is then counted with a virtual channel clock so as to extract run-length data. In this digital PLL system, the number of changing points of an asynchronous signal during an interval between adjacent clocks of the N phase clocks is detected so as to determine phase errors from the detected number of changing points. Phase errors are also determined from the timing relationship between changing points of a signal synchronized with the N phase clocks and each clock of the N phase clocks.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 27, 2005
    Inventors: Shinobu Nakamura, Mamoru Kudo, Satoru Ooshima, Jun Yamane, Hirofumi Shimizu
  • Publication number: 20040264623
    Abstract: A phase-locked-loop device includes a clock generator for generating a reference clock based on a binarized playback signal and a frequency of run-length data and for generating N-phase clocks using the reference clock, a pulse-length measuring device for measuring a pulse length of the binarized playback signal using the N-phase clocks to output pulse-length data, and a run-length-data extracting device for counting the pulse-length data based on a virtual channel clock to extract run-length data. Pulse-length data is generated using the N-phase clocks (e.g., 16-phase clocks). The pulse-length data is counted based on the virtual channel clock to extract run-length data. Thus, it is not needed to generate a high-frequency clock, and the operating frequency is maintained sufficiently low.
    Type: Application
    Filed: June 17, 2004
    Publication date: December 30, 2004
    Inventors: Shinobu Nakamura, Mamoru Kudo, Satoru Ooshima, Jun Yamane, Hirofumi Shimizu
  • Publication number: 20020105365
    Abstract: In PLL circuits for reproducing a channel clock in synchronism with data read from a disk-shaped recording medium driven for rotation, the frequency dividing ratio of frequency dividers provided in desired signal paths is made changeable according to the reproduced signal format of a CD reproduced signal or a DVD reproduced signal, for example. Although the frequency of the channel clock in synchronism with the reproduced signal differs in different signal formats, the above configuration makes it possible to reproduce the channel clock properly in accordance with a plurality of signal formats only by the operation of changing the frequency dividing ratio in a PLL circuit.
    Type: Application
    Filed: December 4, 2001
    Publication date: August 8, 2002
    Inventors: Mamoru Kudo, Shinobu Nakamura