Patents by Inventor Mamoru Yoshioka

Mamoru Yoshioka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9303574
    Abstract: An engine with a supercharger includes a low pressure loop EGR apparatus. An EGR passage having an inlet connected to an exhaust passage downstream of a turbine and an outlet connected to an intake passage upstream of a compressor. An intake bypass passage is provided to bypass the intake passage downstream of the compressor and the intake passage upstream of the compressor, with an ABV in the intake bypass passage. A throttle valve is closed during stop or deceleration operation of the engine. An electronic control unit (ECU) is configured such that, when the ECU determines based on an operation state of the engine that the EGR valve is in a valve-opened state and the engine is in deceleration operation from a supercharging region, the ECU controls an EGR valve to close and the ABV to open from a valve-closed state delayed from start of closing the EGR valve.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: April 5, 2016
    Assignee: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Takehide Nakamura, Mamoru Yoshioka
  • Patent number: 9222387
    Abstract: In a control apparatus for an internal combustion engine provided with an electrically heated catalyst which heats a catalyst having an ability to purify an exhaust gas by heat from a heat generation element which generates heat by the supply of electric power, provision is made for a decision unit that decides a restraint amount for energy inputted to the electrically heated catalyst through the exhaust gas so that a heat generation element internal temperature difference, which is a difference in temperature between predetermined portions in the heat generation element of the electrically heated catalyst at the time of cold starting of the internal combustion engine, falls within a predetermined temperature range; and a control unit that controls an operating state of the internal combustion engine according to the restraint amount for the input energy decided by the decision unit.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: December 29, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriaki Kumagai, Mamoru Yoshioka
  • Patent number: 9222441
    Abstract: An EGR apparatus includes a EGR passage for allowing part of exhaust gas discharged from a combustion chamber of an engine to an exhaust passage to flow in an intake passage and recirculate back to the combustion chamber, and an EGR valve provided in the EGR passage to regulate an EGR passage in this passage. The EGR valve includes a valve seat, a valve element to be seatable on the valve seat, and a step motor for driving the valve element to open and close. An electronic control device controls the EGR valve to repeat opening and closing of the valve element between a closing position and a small opening position in order to remove foreign matters adhered to the valve seat or valve element during deceleration fuel cutoff of the engine.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: December 29, 2015
    Assignee: AISAN KOGYO KABUSHIKI KAISHA
    Inventor: Mamoru Yoshioka
  • Publication number: 20150343894
    Abstract: A grille shutter device includes a grille shutter configured to change its opening degree and placed in a grille opening continuous with an engine room of a vehicle. An ECU controls a motor to control an opening degree of the grille shutter to regulate running air from the grille opening to an engine. The running air passing through the grille shutter flows to a lower part of the cylinder block. The ECU controls the motor to control the opening degree of the grille shutter according to a detected temperature of the lower part of the cylinder block by a temperature sensor.
    Type: Application
    Filed: May 13, 2015
    Publication date: December 3, 2015
    Inventor: Mamoru YOSHIOKA
  • Patent number: 9200555
    Abstract: A purpose of the present invention is to prevent a PM-caused short circuit between a heating element and a case in an electrically heated catalyst. The electrically heated catalyst is provided in an exhaust gas passage of an internal combustion engine the air-fuel ratio of which is controlled at a ratio near a theoretical air-fuel ratio at an operation time. The electrically heated catalyst includes a heating element that generates heat through electric conduction, a case that stores the heating element therein, and an insulating member sandwiched between the heating element and the case. According to the present invention, the heating element is electrically conducted after the operation of the internal combustion engine is stopped.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 1, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Mamoru Yoshioka
  • Publication number: 20150337769
    Abstract: A fuel supply system is configured to reduce the pressure of hydrogen gas delivered from a hydrogen cylinder by a high-pressure regulator arranged in series, regulate a flow rate of the pressure-reduced hydrogen gas by a hydrogen flow regulating device, and supply the hydrogen gas to a fuel cell. The high-pressure regulator includes a middle passage in which the hydrogen gas after being pressure-reduced by a first regulator and before being pressure-reduced by a second regulator enters, a rear passage in which the hydrogen gas after pressure-reduced by the second regulator enters, a communication passage allowing communication between the middle passage and the rear passage, and an internal air check valve provided in the communication passage and arranged to allow the hydrogen gas to flow in a direction from the middle passage toward the rear passage and block the hydrogen gas from flowing in a reverse direction thereto.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 26, 2015
    Inventors: Mamoru YOSHIOKA, Keiso TAKEDA, Kazuhiro NAKAMURA, Masahiro KOBAYASHI, Shigehito SUZUKI, Akihisa HOTTA, Hideyuki FUKUDA
  • Patent number: 9181833
    Abstract: Electricity is suppressed from flowing to a case of an electrically heated catalyst. In the electrically heated catalyst which is provided with a heat generation element adapted to be electrically energized to generate heat, the case in which the heat generation element is received, an inner pipe arranged between the heat generation element and the case for insulating electricity, an inner mat arranged between the heat generation element and the inner pipe, and an outer mat arranged between the inner pipe and the case, the inner pipe includes a tubular portion that is arranged in the surrounding of the heat generation element and is formed in parallel to a central axis of the heat generation element, and a downstream side inclination portion that is arranged at the downstream side of the tubular portion, with an inside diameter thereof becoming smaller in a direction toward a downstream side.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 10, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Mamoru Yoshioka
  • Patent number: 9163541
    Abstract: The present invention is intended to provide a technique which is capable of contributing to the suppression of the deterioration of surface electrodes in an electrically heated catalyst. The electrically heated catalyst according to the invention is provided with a heat generation element to heat a catalyst, and a pair of electrodes to supply electricity to the heat generation element. Each of the pair of electrodes has a surface electrode which spreads along a surface of the heat generation element, and the surface electrodes are arranged in opposition to each other with the heat generation element being sandwiched therebetween.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: October 20, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriaki Kumagai, Mamoru Yoshioka
  • Publication number: 20150285117
    Abstract: Abnormality of an electrically heated catalyst is detected in a more accurate manner. In an abnormality detection apparatus for an electrically heated catalyst which is provided with a heat generation element that is arranged in an exhaust passage of an internal combustion engine, and is electrically energized to generate heat, and an insulation part that provides electrical insulation so that electricity does not flow through the exhaust passage when the heat generation element is electrically energized, provision is made for a determination unit which makes a determination that abnormality has occurred in the electrically heating catalyst, in cases where the heat generation element is electrically energized from before starting of the internal combustion engine, and in cases where a value of an insulation resistance of the insulation part after a predetermined period of time has elapsed from the starting of the internal combustion engine is equal to or less than a threshold value.
    Type: Application
    Filed: December 21, 2011
    Publication date: October 8, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Mamoru Yoshioka
  • Patent number: 9131535
    Abstract: An object of the present invention is to suppress the decrease in the insulation resistance between an electrode and a case resulting from condensed water in an electric heating catalyst (EHC). The EHC includes a heat generating element which generates heat by applying electricity and which heats a catalyst, a case which accommodates the heat generating element, and an insulating member which is provided between the heat generating element and the case, and which provides insulation from electricity. An electrode chamber, which is a space formed around an electrode connected to the heat generating element, is occluded by an occluding member, which has an airtightness higher than those of the heat generating element and the insulating member, in the case of the EHC.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: September 8, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mamoru Yoshioka, Noriaki Kumagai, Naoya Takagi
  • Patent number: 9121322
    Abstract: The present invention is intended to suppress a decrease in insulation resistance between electrodes and a case in an electrically heated catalyst (EHC). The EHC according to the present invention is provided with a heat generation element that is electrically energized to generate heat thereby to heat a catalyst, a case that receives a heat generation element therein, an insulating member that is arranged between the heat generation element and the case for insulating electricity, electrodes that are connected to the heat generation element through an electrode chamber which is a space located between an inner wall surface of the case and an outer peripheral surface of the heat generation element, and a communication passage that makes communication between a portion of an exhaust system of the internal combustion engine, which is other than a portion thereof in which the electrically heated catalyst is arranged, and the electrode chamber.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 1, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Watanabe, Mamoru Yoshioka
  • Publication number: 20150240704
    Abstract: An intake bypass passage is provided between an intake passage downstream of a compressor and the intake passage upstream of the compressor and provided with an ABV. The ABV is a diaphragm valve in which a housing is defined by a diaphragm to form a pressure chamber. A valve seat is provided in the intake bypass passage, and a valve element provided integrally with the diaphragm is arranged to seat on the valve seat. The valve element is urged by a spring in a direction to seat on the valve seat. A pressure passage communicated with a surge tank downstream of a throttle valve is connected to the pressure chamber. The valve element is formed with a communication hole communicating the intake passage downstream of the compressor with the pressure chamber.
    Type: Application
    Filed: January 28, 2015
    Publication date: August 27, 2015
    Inventor: Mamoru YOSHIOKA
  • Patent number: 9115657
    Abstract: An engine includes an injector, an ignition plug, a supercharger, an electronic throttle device, and an EGR apparatus. An EGR passage has an inlet connected to an exhaust passage downstream of a turbine and an outlet connected to the intake passage upstream from a compressor. A fresh-air introduction passage is arranged to introduce fresh air to a surge tank downstream from the electronic throttle device and a fresh-air control valve is provided to regulate a fresh air amount. When an ECU determines that the engine is under deceleration and under fuel supply, the ECU closes the electronic throttle device to a predetermined opening degree to scavenge EGR gas flowing from the EGR passage and remaining in the intake passage, opens a fresh-air control valve to a predetermined opening degree, and causes the ignition plug to retard an ignition timing.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: August 25, 2015
    Assignee: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Mamoru Yoshioka, Takehide Nakamura
  • Patent number: 9109490
    Abstract: An electric heating catalyst (EHC) in which a short circuit between a heat generation element and a case in EHC is suppressed. The EHC includes a heat generation element (catalyst carrier) electrically energized to generate heat; a case receiving the heat generation element; an insulating support member between the heat generation element and the case; a tubular inner pipe inserted into the insulating support member and located between the heat generation element and the case. The inner pipe has an end protruding into an exhaust gas from the insulating support member's end face, and the inner pipe has an electrically insulating layer formed on an entire surface, or the inner pipe is formed of an electrically insulating material; and an inner pipe heater supplied with electricity through a path different from a path through which electricity is supplied to the heat generation element, thereby heating the inner pipe's protrusion portion.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: August 18, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriaki Kumagai, Mamoru Yoshioka
  • Publication number: 20150198102
    Abstract: An engine with a supercharger includes a low pressure loop EGR apparatus. An EGR passage having an inlet connected to an exhaust passage downstream of a turbine and an outlet connected to an intake passage upstream of a compressor. An intake bypass passage is provided to bypass the intake passage downstream of the compressor and the intake passage upstream of the compressor, with an ABV in the intake bypass passage. A throttle valve is closed during stop or deceleration operation of the engine. An electronic control unit (ECU) is configured such that, when the ECU determines based on an operation state of the engine that the EGR valve is in a valve-opened state and the engine is in deceleration operation from a supercharging region, the ECU controls an EGR valve to close and the ABV to open from a valve-closed state delayed from start of closing the EGR valve.
    Type: Application
    Filed: December 10, 2014
    Publication date: July 16, 2015
    Inventors: Takehide NAKAMURA, Mamoru YOSHIOKA
  • Patent number: 9060387
    Abstract: An object of the invention is to control the penetration of condensed water into an insulation member or a heater element in an electric heating catalyst (EHC). The EHC according to the invention includes a heater element that generates heat by supply of electric current to heat a catalyst, a casing that houses the heater element, an insulation member provided between the heater element and the casing to provide electric insulation, and an electrode connected to the heater element through an electrode chamber, which is a space located between the inner wall surface of the casing and the outer circumferential surface of the heater element. The EHC is further provided with a bypass passage, one end of which is connected to a bottom part of the casing at a position upstream of the upstream end face of the insulation member. The bypass passage bypasses the insulation member.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: June 16, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mamoru Yoshioka, Noriaki Kumagai, Naoya Takagi
  • Patent number: 9046020
    Abstract: In an electrically heated catalyst, an electrode is connected to a heat generating element while passing through a through-hole which is formed through a case and an electrode chamber which is formed between an inner wall surface of the case and an outer circumferential surface of the heat generating element. Further, a support member, which is formed of an electric insulator material and which supports the electrode in the through-hole formed through the case, extends along the electrode to the inside of the electrode chamber.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: June 2, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mamoru Yoshioka, Takashi Watanabe
  • Patent number: 9046024
    Abstract: The electricity is suppressed from flowing through a case (5) of an electric heating catalyst (1).
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: June 2, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Mamoru Yoshioka
  • Patent number: 9039981
    Abstract: A laminated body composed of a holding member and an inner cylinder is arranged between a heat generation element, which is electrically energized to generate heat, and a case which covers the heat generation element, and the inner cylinder has an upstream side end portion extended to a more upstream side than an upstream side end face of said heat generation element and an upstream side end face of said holding member to form an extension portion, which is formed with a protruding portion protruding to an inner side in a diametrical direction. A flow of an exhaust gas, which flows backwards after colliding with the heat generation element, will be obstructed by said protruding portion. As a result, the backflow exhaust gas stops flowing into a gap between the case and the inner cylinder.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 26, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Mamoru Yoshioka
  • Publication number: 20150128915
    Abstract: An EGR valve includes a housing formed with a passage, a valve seat provided in the passage, a valve element seatable on the valve seat, a valve stem provided with the valve element at an end, and an actuator for making stroke movement of the valve stem. The valve element is moved together with the valve stem with respect to the valve seat to change an open area of a measuring section, thereby changing an opening degree of the valve element, to adjust a flow rate of EGR gas in the passage. The EGR valve has high-resolution flow-rate characteristics in a low opening region of the valve element and large flow-rate characteristics in a high opening region. The valve element and the valve seat have predetermined shapes to cause the flow-rate characteristics in the low opening region to change in a curve without a step.
    Type: Application
    Filed: October 16, 2014
    Publication date: May 14, 2015
    Inventors: Eiji NAKAMURA, Yukihiro HARADA, Mamoru YOSHIOKA