Patents by Inventor Manabu Oku

Manabu Oku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10502507
    Abstract: A plate-type heat exchanger may include a housing. The housing may include a plurality of rectangular plate-like components that are box-like components each having the same shape and having a standing wall section along a peripheral edge. One of the box-like components may be layered on another components reversed in the horizontal direction to form a layered structure having an upper layer component and a lower layer component such that an upper portion of a standing wall section of the lower layer component of the layered structure is fit into a lower portion of a standing wall section of the upper layer component of the layered structure. The angle (?) of the standing wall sections may be ??30°, and at least a portion of a contact region between the upper portion and the lower portion may be joined by solid phase diffusion bonding.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: December 10, 2019
    Assignee: NIPPON STEEL NISSHIN CO., LTD.
    Inventors: Atsushi Sugama, Manabu Oku, Yoshiaki Hori, Kazunari Imakawa
  • Publication number: 20190039165
    Abstract: A method for welding austenitic stainless steel sheets, in which welding defects do not easily occur. Austenitic stainless steel sheets each with a sheet thickness of 0.6 to 1.0 mm, which each contain, in terms of mass %, 0.08% or less of C, 1.5 to 4.0% of Si, 2.0% or less of Mn, 0.04% or less of P, 0.01% or less of S, 16.0 to 22.0% of Cr, 10.0 to 14.0% of Ni, and 0.08% or less of N, and contain at least one of Nb and Ti in an amount of 1.0% or less in total, with the rest including Fe and inevitable impurities, are overlapped and the overlapped portion is welded by arc welding. In addition, the back side of a deposited portion is cooled from 1200° C. to 900° C. at a cooling rate of 110° C./sec or higher.
    Type: Application
    Filed: August 30, 2016
    Publication date: February 7, 2019
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Yoshitomo FUJIMURA, Kazunari IMAKAWA, Osamu YAMAMOTO, Manabu OKU, Isamu HAYAKAWA, Hiroaki SHICHI, Yoshihide NARUSE
  • Patent number: 10161524
    Abstract: To provide a heat resistant metal gasket that is controlled to have a strength level (ordinary temperature hardness) capable of facilitating processing, and has excellent gas leak resistance. An austenitic stainless steel sheet for a metal gasket, having a chemical composition containing from 0.015 to 0.200% of C, from 1.50 to 5.00% of Si, from 0.30 to 2.50% of Mn, from 7.0 to 17.0% of Ni, from 13.0 to 23.0% of Cr, and from 0.005 to 0.250% of N, all in terms of percentage by mass, containing, as necessary, at least one of Mo, Cu, Nb, Ti, V, Zr, W, Co, B, Al, REM (rare-earth element except for Y), Y, Ca and Mg, with the balance of Fe and unavoidable impurities, having an ordinary temperature hardness of 430 HV or less, having a half width of a peak of an austenite crystal (311) plane in an X-ray diffraction pattern of a cross section perpendicular to a sheet thickness direction of from 0.10 to 1.60°, and having a surface roughness Ra of 0.30 ?mm or less.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: December 25, 2018
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Naohito Kumano, Kazunari Imakawa, Manabu Oku
  • Patent number: 9987706
    Abstract: A method for producing a stainless steel diffusion-bonded product provides a stainless steel material diffusion-bonded product having excellent reliability of the bonded portion by using a direct method, which includes directly contacting stainless steel materials with each other to unify the materials together by diffusion bonding. At least one of the stainless steel materials to be contacted is dual-phase steel having an austenite transformation starting temperature Ac1 point of 650 to 950° C. during the temperature elevation and having an austenite+ferrite dual-phase temperature region in the range of 880° C. or higher. Diffusion bonding is advanced under conditions such that the contact surface pressure is in the range of 1.0 MPa or less and the heating temperature is in the range of from 880 to 1,080° C. while being accompanied by the movement of grain boundary caused when the ferrite phase in the dual-phase steel undergoes transformation to an austenite phase.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: June 5, 2018
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Atsushi Sugama, Yukihiro Nishida, Kazuyuki Kageoka, Yoshiaki Hori, Manabu Oku
  • Patent number: 9932650
    Abstract: A ferritic stainless steel material for brazing without grain coarsening has a partially recrystallized structure and composition comprising, in % by mass, C:0.03% or less, Si: more than 0.1 to 3%, Mn: 0.1 to 2%, Cr: 10 to 35%, Nb: 0.2 to 0.8%, N: 0.03% or less, if necessary, at least one of Mo, Cu, V and W: 4% or less in total, at least one of Ti and Zr: 0.5% or less in total, at least one of Ni and Co: 5% or less in total, or at least one of Al: 6% or less, REM (rare earth metal): 0.2% or less and Ca: 0.1% or less, the remainder being Fe and unavoidable impurities, wherein area ratio in percentage of recrystallized grains formed by heating after cold working is from 10 to 80%.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: April 3, 2018
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Sadayuki Nakamura, Yoshiaki Hori
  • Publication number: 20170321311
    Abstract: Provided is a stainless steel material suitable for diffusion bonded moldings in which diffusion bondability has been further improved without being affected by the extent of surface roughness. The present invention is a stainless steel material for diffusion bonding in which the metal structure before diffusion bonding has a multi-phase structure obtained from two or more of a ferrite phase, a martensite phase and an austenite phase, wherein: the mean crystal grain diameter in the multi-phase structure is not more than 20 ?m; ?max represented by formula (a) is 10-90; and creep elongation when a 1.0 MPa load is applied at 1000° C. for 0.5 his at least 0.2%. ?max=420C?11.5Si+7Mn+23Ni?11.5Cr?12Mo+9Cu?49Ti?47Nb?52Al+470N+189 . . . Formula (a) The element notations in formula (a) represent the contents (mass %) of the respective elements.
    Type: Application
    Filed: October 16, 2015
    Publication date: November 9, 2017
    Inventors: Atsushi SUGAMA, Kazuyuki KAGEOKA, Yoshiaki HORI, Kazunari IMAKAWA, Manabu OKU
  • Publication number: 20170067700
    Abstract: A plate-type heat exchanger may include a housing. The housing may include a plurality of rectangular plate-like components that are box-like components each having the same shape and having a standing wall section along a peripheral edge. One of the box-like components may be layered on another components reversed in the horizontal direction to form a layered structure having an upper layer component and a lower layer component such that an upper portion of a standing wall section of the lower layer component of the layered structure is fit into a lower portion of a standing wall section of the upper layer component of the layered structure. The angle (?) of the standing wall sections may be ??30°, and at least a portion of a contact region between the upper portion and the lower portion may be joined by solid phase diffusion bonding.
    Type: Application
    Filed: February 18, 2015
    Publication date: March 9, 2017
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Atsushi SUGAMA, Manabu OKU, Yoshiaki HORI, Kazunari IMAKAWA
  • Publication number: 20160114423
    Abstract: A method for producing a stainless steel diffusion-bonded product provides a stainless steel material diffusion-bonded product having excellent reliability of the bonded portion by using a direct method, which includes directly contacting stainless steel materials with each other to unify the materials together by diffusion bonding. At least one of the stainless steel materials to be contacted is dual-phase steel having an austenite transformation starting temperature Ac1 point of 650 to 950° C. during the temperature elevation and having an austenite+ferrite dual-phase temperature region in the range of 880° C. or higher. Diffusion bonding is advanced under conditions such that the contact surface pressure is in the range of 1.0 MPa or less and the heating temperature is in the range of from 880 to 1,080° C. while being accompanied by the movement of grain boundary caused when the ferrite phase in the dual-phase steel undergoes transformation to an austenite phase.
    Type: Application
    Filed: May 15, 2013
    Publication date: April 28, 2016
    Inventors: Atsushi SUGAMA, Yukihiro NISHIDA, Kazuyuki KAGEOKA, Yoshiaki HORI, Manabu OKU
  • Publication number: 20130263979
    Abstract: A ferritic stainless steel useful as conduit members for emission of automotive exhaust gas consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision that at least 90% of Cu contained is dissolved in a steel matrix and that Nb?8(C+N). The steel may further contain 0.05-0.30 mass % of Ti and/or 0.0005-0.02 mass % of B. Mo as an inevitable impurity is controlled to be less than 0.10 mass %. The steel has excellent formability, low-temperature toughness and weldability as well as the same heat-resistance as Nb, Mo-alloyed steel.
    Type: Application
    Filed: October 1, 2012
    Publication date: October 10, 2013
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Toshirou Nagoya
  • Publication number: 20130139493
    Abstract: A heat transfer element for manifold prevents thermal fatigue of a manifold main body and has good high-temperature strength and oxidation resistance. At least one part of the heat transfer element for manifold is formed from ferritic stainless steel. The ferritic stainless steel contains at least one element, in terms of mass %, of: C: 0.03% or less; Si: 2.0% or less; Mn: 2.0% or less; Cr: 10 to 30%; Nb: 0.8% or less; and Ti: 0.8% or less, and N: 0.03% or less, and the remaining part thereof is formed from Fe and inevitable impurities. _Further, an alloy content of the ferritic stainless steel is adjusted so that an A value in equation (1), where A value=Nb+Ti?4(C+N), is 0.10 or more, and a B value in equation (2), where B value=Cr+15Si, is 18 or more.
    Type: Application
    Filed: August 8, 2011
    Publication date: June 6, 2013
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Kazunari Imakawa, Yoshihiro Oka, Sadayuki Nakamura, Manabu Oku
  • Patent number: 8206091
    Abstract: In a turbocharger equipped with a nozzle vane for changing the speed of exhaust gas running through a turbine in accordance with the speed of engine revolution, the member to constitute the nozzle vane and to constitute an exhaust guide for guiding exhaust gas to the turbine is characterized in that the exhaust guide member of a nozzle vane-type turbocharge is formed of an austenite stainless steel containing, in terms of % by mass, at most 0.08% of C, from 2.0 to 4.0% of Si, at most 2.0% of Mn, from 8.0 to 16.0% of Ni, from 18.0 to 20.0% of Cr and at most 0.04% of N and containing these ingredients in such a manner that they satisfy a DE value of the specified formula to be from 5.0 to 12.0, with a balance of Fe and inevitable impurities.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: June 26, 2012
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Sadayuki Nakamura, Manabu Oku, Yoshiaki Hori
  • Publication number: 20120111529
    Abstract: A ferritic stainless steel suitable for use as an EGR cooler member, which can be Ni-brazed into an EGR cooler, contains, by mass, C: at most 0.03%, Si: from more than 0.1 to 3%, Mn: from 0.1 to 2%, Cr: from 10 to 25%, Nb: from 0.3 to 0.8%, and N: at most 0.03%, and optionally selectively contains (a) one or more of Mo, Cu, V and W in a total amount of at most 4%, (b) one or more of Ti, Al and Zr in a total amount of at most 0.3%, (c) one or more of Ni and Co in a total amount of at most 5%, and (d) one or more of REMs (rare earth metals) and Ca in a total amount of at most 0.2%, with a balance of Fe and inevitable impurities.
    Type: Application
    Filed: July 27, 2009
    Publication date: May 10, 2012
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Sadayuki Nakamura, Yoshiaki Hori
  • Publication number: 20120085513
    Abstract: A ferritic stainless steel material for brazing without grain coarsening has a partially recrystallized structure and composition comprising, in % by mass, C:0.03% or less, Si: more than 0.1 to 3%, Mn: 0.1 to 2%, Cr: 10 to 35%, Nb: 0.2 to 0.8%, N: 0.03% or less, if necessary, at least one of Mo, Cu, V and W: 4% or less in total, at least one of Ti and Zr: 0.5% or less in total, at least one of Ni and Co: 5% or less in total, or at least one of Al: 6% or less, REM (rare earth metal): 0.2% or less and Ca: 0.1% or less, the remainder being Fe and unavoidable impurities, wherein area ratio in percentage of recrystallized grains formed by heating after cold working is from 10 to 80%.
    Type: Application
    Filed: June 14, 2010
    Publication date: April 12, 2012
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Sadayuki Nakamura, Yoshiaki Hori
  • Publication number: 20110176954
    Abstract: A ferritic stainless steel useful as conduit members for emission of automotive exhaust gas consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision of Nb?8(C+N). The steel may further contain 0.05-0.30 mass % of Ti and/or 0.0005-0.02 mass % of B. Mo as an inevitable impurity is controlled to be less than 0.10 mass %. The steel has excellent formability, low-temperature toughness and weldability as well as the same heat-resistance as Nb, Mo-alloyed steel.
    Type: Application
    Filed: March 8, 2011
    Publication date: July 21, 2011
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Toshirou Nagoya
  • Patent number: 7943085
    Abstract: A ferritic stainless steel for automobile exhaust gas passage components comprises, in mass percent, C: not more than 0.03%, Si: not more than 1%, Mn: not more than 1.5%, Ni: not more than 0.6%, Cr: 10-20%, Nb: not more than 0.5%, Ti: 0.05-0.3%, Al: more than 0.03% to 0.12%, Cu: more than 1% to 2%, V: not more than 0.2%, N: not more than 0.03%, B: 0.0005-0.02%, O: not more than 0.01%, and the balance of Fe and unavoidable impurities, whose composition satisfies the relationships Nb?8 (C+N) and 0.02?Al?(54/48))?0.1. The steel enables fabrication of automobile exhaust gas passage components that are excellent in high-temperature strength and weld toughness, and offers a wide range of freedom in selecting suitable pipe-making conditions.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: May 17, 2011
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Takeo Tomita, Manabu Oku
  • Publication number: 20100223927
    Abstract: Disclosed is a ferritic stainless steel sheet with excellent thermal fatigue properties, including, by mass %, 0.03% or less of C, 1.0% or less of Si, 1.5% or less of Mn, 0.6% or less of Ni, 10˜20% of Cr, 0.05˜0.30% of Ti, 0.51˜0.65% of Nb, 0˜less than 0.10% of Mo, 0.8˜2.0% of Cu, 0˜0.10% of Al, 0.0005˜0.02% of B, 0˜0.20% of V, and 0.03% or less of N, with the balance being Fe and inevitable impurities, having a composition satisfying the following equations (1) and (2) and having a structure in which ?-Cu phase grains each having a long diameter of 0.5 ?m or more are present in a density of 10 or less per 25 ?m2: Nb?8(C+N)?0 . . . (1), 10Si+20Mo+30Cu+20(Ti+V)+160Nb?(Mn+Ni)?100 . . . (2). The ferritic stainless steel sheet, having a relatively inexpensive component composition, has excellent thermal fatigue properties, and is suitable for use in an automotive exhaust-gas path member, including an exhaust manifold, a catalyst converter, a front pipe, or a center pipe.
    Type: Application
    Filed: April 8, 2010
    Publication date: September 9, 2010
    Inventors: Manabu OKU, Takeo Tomita, Yosuke Sumi, Yasuhisa Tanaka
  • Publication number: 20100203357
    Abstract: Provided is an Al-plated steel sheet for motorcycle exhaust gas passageway members excellent in high-temperature strength and red scale resistance, which is produced by dipping a substrate steel sheet comprising, in terms of % by mass, at most 0.02% of C, at most 2% of Si, at most 2% of Mn, from 5 to 25% of Cr, from more than 0.1 to 1% of Nb, at most 0.3% of Ti, at most 0.02% of N, and optionally at least one of at most 0.6% of Ni, at most 0.2% of Al, at most 3% of Mo, at most 3% of Cu, at most 3% of W, at most 0.5% of V, at most 0.5% of Co and at most 0.01% of B, with a balance of Fe and inevitable impurities, in a hot-dip Al-base plating bath to thereby form a hot-dip plating layer having a mean thickness of from 3 to 20 ?m on the surface thereof.
    Type: Application
    Filed: July 29, 2008
    Publication date: August 12, 2010
    Inventors: Yoshiaki Hori, Sadayuki Nakamura, Manabu Oku, Shin Ueno, Yasunori Hattori
  • Publication number: 20100200101
    Abstract: Provided is an Al-plated steel sheet for motorcycle exhaust gas passageway members excellent in red scale resistance, which is produced by dipping a substrate steel sheet comprising, in terms of % by mass, at most 0.02% of C, at most 1% of Si, at most 1% of Mn, from 5 to 25% of Cr, at most 0.3% of Ti, at most 0.02% of N, and optionally at least one of at most 0.6% of Ni, at most 0.1% of Nb, at most 0.2% of Al, at most 3% of Mo, at most 3% of Cu, at most 3% of W, at most 0.5% of V, at most 0.5% of Co and at most 0.01% of B, with a balance of Fe and inevitable impurities, in a hot-dip Al-base plating bath to thereby form a hot-dip plating layer having a mean thickness of from 3 to 20 ?m on the surface thereof.
    Type: Application
    Filed: July 29, 2008
    Publication date: August 12, 2010
    Inventors: Yoshiaki Hori, Sadayuki Nakamura, Manabu Oku, Shin Ueno, Yasunori Hattori
  • Publication number: 20100122800
    Abstract: Provided is a ferritic stainless steel for heat pipes of high-temperature exhaust heat recovery systems, which comprises, in terms of % by mass, from 16 to 32% of Cr, at most 0.03% of C, at most 0.03% of N, at most 3% of Si, at most 2% of Mn, at most 0.008% of S, from 0 to 0.3% of Al, and at least one of at most 0.7% of Nb, at most 0.3% of Ti, at most 0.5% of Zr and at most 1% of V, and optionally at least one of at most 3% of Mo, at most 3% of W, at most 3% of Cu, at most 0.1% of Y, at most 0.1% of REM (rare earth metal) and at most 0.01% of Ca, with a balance of Fe and inevitable impurities, and which satisfies at least the following formula (1), formula (2) and formula (5): Cr+3(Mo+Cu)?20??(1) Cr+3(Si+Mn+Al?Ti)?20??(2) 0.037{(C+N)/(V+Ti+0.5Nb+0.5Zr)}+0.001?0.01??(5).
    Type: Application
    Filed: November 13, 2009
    Publication date: May 20, 2010
    Inventors: Yukihiro Nishida, Yoshitomo Fujimura, Manabu Oku, Yuki Mukobara, Kimio Kohara, Kazuaki Kafuku
  • Publication number: 20100119404
    Abstract: A ferritic stainless steel useful as conduit members for emission of automotive exhaust gas consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision of Nb?8(C+N). The steel may further contain 0.05-0.30 mass % of Ti and/or 0.0005-0.02 mass % of B. Mo as an inevitable impurity is controlled to be less than 0.10 mass %. The steel has excellent formability, low-temperature toughness and weldability as well as the same heat-resistance as Nb, Mo-alloyed steel.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Toshirou Nagoya