Patents by Inventor Manoj Mehrotra

Manoj Mehrotra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080153256
    Abstract: The invention provides methods for forming isolation structures and STI trenches in a semiconductor device, which may be carried out in a variety of semiconductor manufacturing processes. One embodiment of the invention relates to a method of forming a semiconductor device having isolation structures. In this method, trench regions are formed within a semiconductor body, and then surfaces of the trench regions are nitrided. Then the nitrided surfaces are subjected to a condition that limits nitrogen desorption from the nitrided surfaces. The nitrided surfaces of the trench regions are then oxidized to form nitrogen containing liners, after which the isolation trench is filled with a dielectric material. Other methods and systems are also disclosed.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventors: Hiroaki Niimi, Manoj Mehrotra
  • Publication number: 20080145991
    Abstract: Slim spacers are implemented in transistor fabrication. More particularly, wide sidewall spacers are initially formed and used to guide dopants into source/drain regions in a semiconductor substrate. The wide sidewall spacers are then removed and slim sidewall spacers are formed alongside a gate stack of the transistor. The slim spacers facilitate transferring stress from an overlying pre metal dielectric (PMD) liner to a channel of the transistor, and also facilitate reducing a resistance in the transistor by allowing silicide regions to be formed closer to the channel. This mitigates yield loss by facilitating predictable or otherwise desirable behavior of the transistor.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Inventors: Manoj Mehrotra, Karen Hildegard Ralston Kirmse, Shirin Siddiqui
  • Publication number: 20080146043
    Abstract: The invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, among others, may include forming one or more layers of material within an opening in a substrate, the opening and the one or more layers forming at least a portion of an isolation structure, and subjecting at least one of the one or more layers to an energy beam treatment, the energy beam treatment configured to change a stress of the one or more layers subjected thereto, and thus change a stress in the substrate.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Puneet Kohli, Manoj Mehrotra, Jin Zhao, Sameer Ajmera
  • Publication number: 20080076225
    Abstract: The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, among other steps, may include forming a gate structure over a substrate, forming at least a portion of gate sidewall spacers proximate sidewalls of the gate structure, and subjecting the at least a portion of the gate sidewall spacers to an energy beam treatment, the energy beam treatment configured to change a stress of the at least a portion of the gate sidewall spacers, and thus change a stress in the substrate therebelow.
    Type: Application
    Filed: September 21, 2006
    Publication date: March 27, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Puneet Kohli, Manoj Mehrotra, Jin Zhao, Sameer Ajmera
  • Publication number: 20080076227
    Abstract: The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device includes, among other steps, forming a gate structure over a substrate, the gate structure having source/drain regions proximate thereto and in, on or over the substrate, forming a pre-metal dielectric layer over the gate structure and source/drain regions, and subjecting the pre-metal dielectric layer to an energy beam treatment, the energy beam treatment configured to change a stress of the pre-metal dielectric layer, and thus change a stress in the substrate therebelow.
    Type: Application
    Filed: September 21, 2006
    Publication date: March 27, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Puneet Kohli, Manoj Mehrotra, Jin Zhao, Sameer Ajmera
  • Patent number: 7344929
    Abstract: The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit. The method for manufacturing the semiconductor device, among other steps, includes forming a capping layer (210) over a transistor device having source/drain regions (150, 155) located over a substrate (110), the capping layer (210) having a degree of reflectivity, and annealing the transistor device through the capping layer (210) using photons (310), the annealing of the transistor device affected by the degree of reflectivity.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: March 18, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Amitabh Jain
  • Patent number: 7279397
    Abstract: A method (200) of forming an isolation structure is presented, in which a hard mask layer (304, 308) is formed (204, 206) over the isolation and active regions (305, 303) of a semiconductor body (306), and a dopant is selectively provided to a portion of the active region (303) proximate the isolation region (305) to create a threshold voltage compensation region (318). After the compensation region (318) is created, the hard mask layer (304, 308) is patterned (218) to create a patterned hard mask. The patterned hard mask is then used in forming (222) a trench (323) in the isolation region (305) near the compensation region (318), and the trench (323) is then filled (224) with a dielectric material (338).
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: October 9, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Amitava Chatterjee
  • Patent number: 7211481
    Abstract: The present invention facilitates semiconductor fabrication by providing methods of fabrication that apply tensile strain to channel regions of devices while mitigating unwanted dopant diffusion, which degrades device performance. Source/drain regions are formed in active regions of a PMOS region (102). A first thermal process is performed that activates the formed source/drain regions and drives in implanted dopants (104). Subsequently, source/drain regions are formed in active regions of an NMOS region (106). Then, a capped poly layer is formed over the device (108). A second thermal process is performed (110) that causes the capped poly layer to induce strain into the channel regions of devices. Because of the first thermal process, unwanted dopant diffusion, particularly unwanted p-type dopant diffusion, during the second thermal process is mitigated.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: May 1, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Lahir Shaik Adam, Song Zhao, Mahalingam Nandakumar
  • Patent number: 7199020
    Abstract: A method (1300) of forming a semiconductor device comprising an isolation structure is disclosed, and includes forming a trench region within a semiconductor body (1308). Then, surfaces of the trench region are nitrided (1310) via a nitridation process. An oxidation process is performed that combines with the nitrided surfaces (1312) to form a nitrogen containing liner. Subsequently, the trench region is filled with dielectric material (1316) and then planarized (1318) to remove excess dielectric fill material.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: April 3, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Hiroaki Niimi
  • Publication number: 20060228867
    Abstract: A method (10) of forming an isolation structure (140, 142) in a semiconductor substrate (102) is disclosed, wherein the isolation structure (140, 142) can be formed in a controlled manner so as to regulate stresses exerted by the structure on one or more active regions (106) of the substrate (102) located adjacent to the structure (140, 142).
    Type: Application
    Filed: April 12, 2005
    Publication date: October 12, 2006
    Inventors: Manoj Mehrotra, Amitava Chatterjee, Jin Zhao
  • Publication number: 20060226559
    Abstract: A method (1300) of forming a semiconductor device comprising an isolation structure is disclosed, and includes forming a trench region within a semiconductor body (1308). Then, surfaces of the trench region are nitrided (1310) via a nitridation process. An oxidation process is performed that combines with the nitrided surfaces (1312) to form a nitrogen containing liner. Subsequently, the trench region is filled with dielectric material (1316) and then planarized (1318) to remove excess dielectric fill material.
    Type: Application
    Filed: April 11, 2005
    Publication date: October 12, 2006
    Inventors: Manoj Mehrotra, Hiroaki Niimi
  • Publication number: 20060189048
    Abstract: The present invention facilitates semiconductor fabrication by providing methods of fabrication that apply tensile strain to channel regions of devices while mitigating unwanted dopant diffusion, which degrades device performance. Source/drain regions are formed in active regions of a PMOS region (102). A first thermal process is performed that activates the formed source/drain regions and drives in implanted dopants (104). Subsequently, source/drain regions are formed in active regions of an NMOS region (106). Then, a capped poly layer is formed over the device (108). A second thermal process is performed (110) that causes the capped poly layer to induce strain into the channel regions of devices. Because of the first thermal process, unwanted dopant diffusion, particularly unwanted p-type dopant diffusion, during the second thermal process is mitigated.
    Type: Application
    Filed: February 18, 2005
    Publication date: August 24, 2006
    Inventors: Manoj Mehrotra, Lahir Adam, Song Zhao, Mahalingam Nandakumar
  • Publication number: 20060154475
    Abstract: The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit. The method for manufacturing the semiconductor device, among other steps, includes forming a capping layer (210) over a transistor device having source/drain regions (150, 155) located over a substrate (110), the capping layer (210) having a degree of reflectivity, and annealing the transistor device through the capping layer (210) using photons (310), the annealing of the transistor device affected by the degree of reflectivity.
    Type: Application
    Filed: January 13, 2005
    Publication date: July 13, 2006
    Applicant: Texas Instruments, Inc.
    Inventors: Manoj Mehrotra, Amitabh Jain
  • Publication number: 20060057853
    Abstract: An embodiment of the invention is a method for improving the uniformity of silicide 190 in semiconductor wafers 10. The method may include etching source/drain sidewall spacers 150, performing an oxidation of semiconductor wafer 10, and then performing a wet clean of semiconductor wafer 10.
    Type: Application
    Filed: September 15, 2004
    Publication date: March 16, 2006
    Inventors: Manoj Mehrotra, Freidoon Mehrad, F. Johnson
  • Publication number: 20060024909
    Abstract: A method (200) of forming an isolation structure is presented, in which a hard mask layer (304, 308) is formed (204, 206) over the isolation and active regions (305, 303) of a semiconductor body (306), and a dopant is selectively provided to a portion of the active region (303) proximate the isolation region (305) to create a threshold voltage compensation region (318). After the compensation region (318) is created, the hard mask layer (304, 308) is patterned (218) to create a patterned hard mask. The patterned hard mask is then used in forming (222) a trench (323) in the isolation region (305) near the compensation region (318), and the trench (323) is then filled (224) with a dielectric material (338).
    Type: Application
    Filed: July 27, 2004
    Publication date: February 2, 2006
    Inventors: Manoj Mehrotra, Amitava Chatterjee
  • Patent number: 6987061
    Abstract: The present invention pertains to forming respective silicides on multiple transistors in a single process. High performance is facilitated with simple and highly integrated process flows. As such, transistors, and an integrated circuit containing the transistors, can be fabricated efficiently and at a low cost. The different silicides can be formed with different materials and/or to different thicknesses. As such, the silicides can have different electrical characteristics, such as resistivity and conductivity. These different attributes instill the transistors with different work functions when formed as gate contacts thereon. This provides an integrated circuit containing the transistors with diverse operating capabilities allowing for the execution of operations requiring more flexibility and/or functionality.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: January 17, 2006
    Assignee: Texas Instruments Incorporated
    Inventor: Manoj Mehrotra
  • Publication number: 20050042831
    Abstract: The present invention pertains to forming respective suicides on multiple transistors in a single process. High performance is facilitated with simple and highly integrated process flows. As such, transistors, and an integrated circuit containing the transistors, can be fabricated efficiently and at a low cost. The different suicides can be formed with different materials and/or to different thicknesses. As such, the silicides can have different electrical characteristics, such as resistivity and conductivity. These different attributes instill the transistors with different work functions when formed as gate contacts thereon. This provides an integrated circuit containing the transistors with diverse operating capabilities allowing for the execution of operations requiring more flexibility and/or functionality.
    Type: Application
    Filed: August 19, 2003
    Publication date: February 24, 2005
    Inventor: Manoj Mehrotra
  • Patent number: 6743705
    Abstract: A method (40) of forming an integrated circuit (60) device including a substrate (64). The method including the step of first (42), forming a gate stack (62) in a fixed relationship to the substrate, the gate stack including a gate having sidewalls. The method further includes the step of second (42), implanting source/drain extensions (701, 702) into the substrate and self-aligned relative to the gate stack. The method further includes the steps of third (46, 48), forming a first sidewall-forming layer (72) in a fixed relationship to the sidewalls and forming a second sidewall-forming layer (74) in a fixed relationship to the sidewalls. The step of forming a second sidewall-forming layer includes depositing the second sidewall-forming layer at a temperature equal to or greater than approximately 850° C.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: June 1, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Haowen Bu, Amitabh Jain
  • Publication number: 20040099891
    Abstract: A method of photolithographically forming an integrated circuit feature, such as a conductive structure, for example a gate electrode (15), or such as a patterned insulator feature, is disclosed. A critical dimension (CD) for a photolithography process defines a minimum line width of photoresist or other masking material that may be patterned by the process. A photomask (20, 30, 40, 50, 60) has a mask feature (25, 35, 45, 55, 65) that has varying width portions along its length. The wider portions have a width (L1) that is at or above the critical dimension of the process, while the narrower portions have a width (L2) that is below the critical dimension of the process. In the case of a patterned etch of a conductor, photoexposure and etching of conductive material using the photomask (20, 30, 40, 50, 60) defines a gate electrode (15) for a transistor (10) that has a higher drive current than a transistor having a uniform gate width at the critical dimension.
    Type: Application
    Filed: November 20, 2003
    Publication date: May 27, 2004
    Inventors: Manoj Mehrotra, John N. Randall, Mark S. Rodder
  • Patent number: 6737325
    Abstract: According to one embodiment of the invention, a method for manufacturing a transistor is provided. The method includes masking a polysilicon layer of a semiconductor device to have a dimension greater than a critical dimension of a gate to be formed. The polysilicon layer overlies a substrate layer. The method also includes incompletely etching the polysilicon layer. The method also includes forming a source region and a drain region in the substrate layer through the incompletely etched polysilicon layer by doping the substrate layer and applying heat at a first temperature. The method also includes forming a source extension and a drain extension in the substrate layer after forming the source region and the drain region by doping the substrate layer and applying heat at a second temperature.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: May 18, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Reima Tapani Laaksonen