Patents by Inventor Mansoor K. Siddiqui

Mansoor K. Siddiqui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230101673
    Abstract: An RF amplifier utilizes first and second main amplifiers in a balanced amplifier configuration with first and second auxiliary amplifiers connected in parallel across the first and second main amplifiers, respectively. The main and the auxiliary amplifiers are biased such that the third-order nonlinearity components in the combined output current are reduced. A common or independent bias control circuit(s) control(s) the DC operating bias of the auxiliary amplifiers and establishes DC operating points on curves representing third-order nonlinear components within the drain current having a positive slope (opposite to the corresponding slope of the main amplifiers). This results in reduction of overall third-order nonlinear components in combined currents at the output. In another embodiment, a phase shift of an input to one auxiliary amplifier is used to provide a peak in minimization at a frequency associated with the phase shift.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 30, 2023
    Inventors: Manouchehr Ghanevati, Mansoor K. Siddiqui, David J. Miller, Michael Herndon
  • Patent number: 11056760
    Abstract: A method of making an electrical structure having a foam housing is set forth. The foam housing includes an interior surface forming a conductive cavity adapted to carry energized waveforms therethrough. An electrical component of the electrical structure is integrally formed with the interior surface as the foam housing of the structure is assembled. The method includes the steps of depositing a plating material into a mold, pouring a foam polymer into the mold and removing the plated foam structure from the mold without etching the section from the mold. The method further includes steps of forming a metallic form into a planar structure, filling the open pores of the foam with a material such as photo-resist, machining a cavity from the foam, electroplating the cavity in the foam then removing the photo-resist material.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: July 6, 2021
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Steven J. Mass, Anthony L. Long, Mansoor K. Siddiqui, Marijan D. Grgas, Gershon Akerling
  • Publication number: 20190081381
    Abstract: A method of making an electrical structure having a foam housing is set forth. The foam housing includes an interior surface forming a conductive cavity adapted to carry energized waveforms therethrough. An electrical component of the electrical structure is integrally formed with the interior surface as the foam housing of the structure is assembled. The method includes the steps of depositing a plating material into a mold, pouring a foam polymer into the mold and removing the plated foam structure from the mold without etching the section from the mold. The method further includes steps of forming a metallic form into a planar structure, filling the open pores of the foam with a material such as photo-resist, machining a cavity from the foam, electroplating the cavity in the foam then removing the photo-resist material.
    Type: Application
    Filed: October 2, 2018
    Publication date: March 14, 2019
    Inventors: Steven J. Mass, Anthony L. Long, Mansoor K. Siddiqui, Marijan D. Grgas, Gershon Akerling
  • Patent number: 10122063
    Abstract: A method of making an electrical structure having a foam housing is set forth. The foam housing includes an interior surface forming a conductive cavity adapted to carry energized waveforms therethrough. An electrical component of the electrical structure is integrally formed with the interior surface as the foam housing of the structure is assembled. The method includes the steps of depositing a plating material into a mold, pouring a foam polymer into the mold and removing the plated foam structure from the mold without etching the section from the mold. The method further includes steps of forming a metallic form into a planar structure, filling the open pores of the foam with a material such as photo-resist, machining a cavity from the foam, electroplating the cavity in the foam then removing the photo-resist material.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: November 6, 2018
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Steven J. Mass, Anthony L. Long, Mansoor K. Siddiqui, Marijan D. Grgas, Gershon Akerling
  • Publication number: 20160149286
    Abstract: A method of making an electrical structure having a foam housing is set forth. The foam housing includes an interior surface forming a conductive cavity adapted to carry energized waveforms therethrough. An electrical component of the electrical structure is integrally formed with the interior surface as the foam housing of the structure is assembled. The method includes the steps of depositing a plating material into a mold, pouring a foam polymer into the mold and removing the plated foam structure from the mold without etching the section from the mold. The method further includes steps of forming a metallic form into a planar structure, filling the open pores of the foam with a material such as photo-resist, machining a cavity from the foam, electroplating the cavity in the foam then removing the photo-resist material.
    Type: Application
    Filed: February 2, 2016
    Publication date: May 26, 2016
    Inventors: Steven J. Mass, Anthony L. Long, Mansoor K. Siddiqui, Marijan D. Grgas, Gershon Akerling
  • Patent number: 9293800
    Abstract: An electrical structure having a foam housing is set forth. The foam housing includes an interior surface forming a conductive cavity adapted to carry energized waveforms therethrough. An electrical component of the electrical structure is integrally formed with the interior surface as the foam housing of the structure is assembled.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: March 22, 2016
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Steven J. Mass, Anthony L. Long, Mansoor K. Siddiqui, Marijan D. Grgas, Gershon Akerling
  • Publication number: 20120152454
    Abstract: An electrical structure having a foam housing is set forth. The foam housing includes an interior surface forming a conductive cavity adapted to carry energized waveforms therethrough. An electrical component of the electrical structure is integrally formed with the interior surface as the foam housing of the structure is assembled.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 21, 2012
    Inventors: Steven J. Mass, Anthony L. Long, Mansoor K. Siddiqui, Marijan D. Grgas, Gershon Akerling
  • Publication number: 20080219246
    Abstract: A switching circuit (100) is provided, comprising: a signal coupler (110) configured to receive first and second input signals and provide first and second coupled signals; a first phase shifter (130) configured to shift a first phase of the first coupled signal by zero degrees or ninety degrees based on a first control signal to generate a first shifted signal; a second phase shifter (135) configured to shift a second phase of the second coupled signal by zero degrees or ninety degrees based on a second control signal to generate a second shifted signal; and a combiner (150) configured to combine the first and second shifted signals. The first coupled signal includes an in-phase copy of the first input signal and a ninety-degree-shifted copy of the second input signal; and the second coupled signal includes an in-phase copy of the second input signal and a ninety-degree-shifted copy of the first input signal.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Applicant: Northrop Grumman Space and Mission Systems Corp.
    Inventors: Mansoor K. Siddiqui, Albert F. Lawrence, Kai E. Johnson, Lance B. Sjogren