Patents by Inventor Manu Sebastian Mannoor

Manu Sebastian Mannoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9517128
    Abstract: A bioelectronic device and method of making is disclosed. The device includes a scaffold formed via 3D printing. The device also includes a biologic and an electronic device formed via 3D printing, the biologic and electronic device being interweaved with or coupled to the scaffold. The electronic component may e.g., include at least one of hard conductors, soft conductors, insulators and semiconductors. The scaffold may be formed of at least one of synthetic polymers and natural biological polymers. The biologic may include at least one of animal cells, plant cells, cellular organelles, proteins and DNA (including RNA).
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: December 13, 2016
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Michael C. McAlpine, Manu Sebastian-Mannoor, Yong Lin Kong, Blake N Johnson
  • Publication number: 20160223538
    Abstract: A biosensor and method of making are disclosed. The biosensor is configured to detect a target and may include a peptide immobilized on a sensing component, the sensing component having an anode and a cathode. The immobilized peptide may comprise an antimicrobial peptide binding motif for the target. The sensing component has an electrical conductivity that changes in response to binding of the immobilized peptide to the target. The immobilized peptide may bind one or more targets selected from the list consisting of: bacteria, Gram-negative bacteria, Gram-positive bacteria, pathogens, protozoa, fungi, viruses, and cancerous cells. The biosensor may have a display with a readout that is responsive to changes in electrical conductivity of the sensing component. The display unit may be wirelessly coupled to the sensing component. A resonant circuit with an inductive coil may be electrically coupled to the sensing component.
    Type: Application
    Filed: May 11, 2015
    Publication date: August 4, 2016
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Michael C. McAlpine, Manu Sebastian Mannoor
  • Patent number: 9029168
    Abstract: A biosensor and method of making are disclosed. The biosensor is configured to detect a target and may include a peptide immobilized on a sensing component, the sensing component having an anode and a cathode. The immobilized peptide may comprise an antimicrobial peptide binding motif for the target. The sensing component has an electrical conductivity that changes in response to binding of the immobilized peptide to the target. The immobilized peptide may bind one or more targets selected from the list consisting of: bacteria, Gram-negative bacteria, Gram-positive bacteria, pathogens, protozoa, fungi, viruses, and cancerous cells. The biosensor may have a display with a readout that is responsive to changes in electrical conductivity of the sensing component. The display unit may be wirelessly coupled to the sensing component. A resonant circuit with an inductive coil may be electrically coupled to the sensing component.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: May 12, 2015
    Assignee: The Trustees of Princeton University
    Inventors: Michael C. McAlpine, Manu Sebastian Mannoor
  • Publication number: 20140257518
    Abstract: A bioelectronic device and method of making is disclosed. The device includes a scaffold formed via 3D printing. The device also includes a biologic and an electronic device formed via 3D printing, the biologic and electronic device being interweaved with or coupled to the scaffold. The electronic component may e.g., include at least one of hard conductors, soft conductors, insulators and semiconductors. The scaffold may be formed of at least one of synthetic polymers and natural biological polymers. The biologic may include at least one of animal cells, plant cells, cellular organelles, proteins and DNA (including RNA).
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Michael C. McAlpine, Manu Sebastian-Mannoor, Yong Lin Kong, Blake N. Johnson
  • Publication number: 20120156688
    Abstract: A biosensor and method of making are disclosed. The biosensor is configured to detect a target and may include a peptide immobilized on a sensing component, the sensing component having an anode and a cathode. The immobilized peptide may comprise an antimicrobial peptide binding motif for the target. The sensing component has an electrical conductivity that changes in response to binding of the immobilized peptide to the target. The immobilized peptide may bind one or more targets selected from the list consisting of: bacteria, Gram-negative bacteria, Gram-positive bacteria, pathogens, protozoa, fungi, viruses, and cancerous cells. The biosensor may have a display with a readout that is responsive to changes in electrical conductivity of the sensing component. The display unit may be wirelessly coupled to the sensing component. A resonant circuit with an inductive coil may be electrically coupled to the sensing component.
    Type: Application
    Filed: June 28, 2011
    Publication date: June 21, 2012
    Inventors: Michael C. McAlpine, Manu Sebastian Mannoor