Patents by Inventor Maosheng Hao

Maosheng Hao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10230018
    Abstract: A substrate used for III-V-nitride growth and a manufacturing method thereof, the manufacturing method including the following steps: 1) providing a growth substrate, and forming on the surface of the growth substrate a buffer layer used for subsequent growth of a luminescent epitaxial structure; 2) forming a semiconductor dielectric layer on the surface of the buffer layer; 3) by a photolithography process, etching a plurality of semiconductor dielectric protrusions arranged at intervals on the semiconductor dielectric layer, and exposing the buffer layer between the semiconductor dielectric protrusions. This method ensures the crystal quality of the grown luminescent epitaxial structure and also raises the luminescent efficiency of a light-emitting diode. The process is simple, advantageous for reducing cost of manufacture, and suitable for use in industrial production.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: March 12, 2019
    Assignee: CHIP FOUNDATION TECHNOLOGY LTD.
    Inventors: Maosheng Hao, Genru Yuan, Ming Xi, Yue Ma
  • Publication number: 20160359082
    Abstract: A substrate used for III-V-nitride growth and a manufacturing method thereof, the manufacturing method including the following steps: 1) providing a growth substrate, and forming on the surface of the growth substrate a buffer layer used for subsequent growth of a luminescent epitaxial structure; 2) forming a semiconductor dielectric layer on the surface of the buffer layer; 3) by a photolithography process, etching a plurality of semiconductor dielectric protrusions arranged at intervals on the semiconductor dielectric layer, and exposing the buffer layer between the semiconductor dielectric protrusions. This method ensures the crystal quality of the grown luminescent epitaxial structure and also raises the luminescent efficiency of a light-emitting diode. The process is simple, advantageous for reducing cost of manufacture, and suitable for use in industrial production.
    Type: Application
    Filed: November 6, 2014
    Publication date: December 8, 2016
    Applicant: CHIP FOUNDATION TECHNOLOGY LTD.
    Inventors: Maosheng HAO, Genru YUAN, Ming XI, Yue MA
  • Publication number: 20160359083
    Abstract: A substrate used for III-V-nitride growth and a manufacturing method thereof, the manufacturing method comprising the following steps: 1) providing a growth substrate, and forming on the surface of the growth substrate a buffer layer used for subsequent growth of a luminescent epitaxial structure; 2) forming a semiconductor dielectric layer on the surface of the buffer layer; 3) by means of a photolithography process, etching a plurality of semiconductor dielectric protrusions arranged at intervals on the semiconductor dielectric layer, and exposing the buffer layer between the semiconductor dielectric protrusions. This method ensures the crystal quality of the grown luminescent epitaxial structure and also raises the luminescent efficiency of a light-emitting diode. The process is simple, advantageous for reducing cost of manufacture, and suitable for use in industrial production.
    Type: Application
    Filed: November 6, 2014
    Publication date: December 8, 2016
    Applicants: EPILIGHT TECHNOLOGY CO., LTD, CHIP FOUNDATION TECHNOLOGY LTD.
    Inventors: Maosheng HAO, Guangmin ZHU, Genru YUAN, Zhigang XING, Zhenyi LI, Shengli QI, Wendi LIU, Ming XI, Yue MA
  • Patent number: 6861271
    Abstract: Indium Nitride (InN) and Indium-rich Indium Gallium Nitride (InGaN) quantum dots embedded in single and multiple InxGa1-xN/InyGa1-yN quantum wells (QWs) are formed by using TMIn and/or Triethylindium (TEIn), Ethyldimethylindium (EDMIn) as antisurfactant during MOCVD growth, wherein the photoluminescence wavelength from these dots ranges from 480 nm to 530 nm. Controlled amounts of TMIn and/or other Indium precursors are important in triggering the formation of dislocation-free QDs, as are the subsequent flows of ammonia and TMIn. This method can be readily used for the growth of the active layers of blue and green light emitting diodes (LEDs).
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: March 1, 2005
    Assignees: The National University of Singapore, Institute of Materials Research & Engineering
    Inventors: Soo Jin Chua, Peng Li, Maosheng Hao, Ji Zhang
  • Publication number: 20040023427
    Abstract: Indium Nitride (InN) and Indium-rich Indium Gallium Nitride (InGaN) quantum dots embedded in single and multiple InxGa1−xN/InyGa1−yN quantum wells (QWs) are formed by using TMIn and/or Triethylindium (TEIn), Ethyldimethylindium (EDMIn) as antisurfactant during MOCVD growth, wherein the photoluminescence wavelength from these dots ranges from 480 nm to 530 nm. Controlled amounts of TMIn and/or other Indium precursors are important in triggering the formation of dislocation-free QDs, as are the subsequent flows of ammonia and TMIn. This method can be readily used for the growth of the active layers of blue and green light emitting diodes (LEDs).
    Type: Application
    Filed: August 5, 2003
    Publication date: February 5, 2004
    Applicants: UNIVERSITY OF SINGAPORE, INSTITUTE OF MATERIALS RESEARCH & ENGINEERING
    Inventors: Soo Jin Chua, Peng Li, Maosheng Hao, Ji Zhang
  • Patent number: 6645885
    Abstract: Indium Nitride (InN) and Indium-rich Indium Gallium Nitride (InGaN) quantum dots embedded in single and multiple InxGa1−xN/InyGa1−yN quantum wells (QWs) are formed by using TMIn and/or Triethylindium (TEIn), Ethyldimethylindium (EDMIn) as antisurfactant during MOCVD growth, wherein the photoluminescence wavelength from these dots ranges from 480 nm to 530 nm. Controlled amounts of TMIn and/or other Indium precursors are important in triggering the formation of dislocation-free QDs, as are the subsequent flows of ammonia and TMIn. This method can be readily used for the growth of the active layers of blue and green light emitting diodes (LEDs).
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: November 11, 2003
    Assignees: The National University of Singapore, Institute of Materials Research & Engineering
    Inventors: Soo Jin Chua, Peng Li, Maosheng Hao, Ji Zhang
  • Publication number: 20030059971
    Abstract: Indium Nitride (InN) and Indium-rich Indium Gallium Nitride (InGaN) quantum dots embedded in single and multiple InxGa1-xN/InyGa1-yN quantum wells (QWs) are formed by using TMIn and/or Triethylindium (TEIn), Ethyldimethylindium (EDMIn) as antisurfactant during MOCVD growth, wherein the photoluminescence wavelength from these dots ranges from 480 nm to 530 nm. Controlled amounts of TMIn and/or other Indium precursors are important in triggering the formation of dislocation-free QDs, as are the subsequent flows of ammonia and TMIn. This method can be readily used for the growth of the active layers of blue and green light emitting diodes (LEDs).
    Type: Application
    Filed: September 27, 2001
    Publication date: March 27, 2003
    Inventors: Soo Jin Chua, Peng Li, Maosheng Hao, Ji Zhang