Patents by Inventor Maoxiang HOU

Maoxiang HOU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969716
    Abstract: This application discloses a silicon carbide (SiC)-loaded graphene photocatalyst for hydrogen production under visible light irradiation and a preparation method thereof. Pure SiC and pure black carbon are respectively prepared and mixed to obtain a mixture with a resistance less than 100?. Then the mixture was vacuumized and processed with a current pulse with an increasing voltage until a breakdown occurs, and subjected to ultrasonic stirring, centrifugal washing and vacuum drying in turn to obtain the SiC-loaded graphene photocatalyst. By means of the current pulse, a heterojunction is formed between SiC and graphene to improve the catalytic activity of the photocatalyst; and the photocatalytic hydrogen production rate of SiC nanoparticles can be enhanced after loaded on the graphene.
    Type: Grant
    Filed: June 21, 2023
    Date of Patent: April 30, 2024
    Assignee: Guangdong University of Technology
    Inventors: Yun Chen, Shengbao Lai, Biao Li, Zuohui Liu, Guanhai Wen, Maoxiang Hou, Xin Chen
  • Patent number: 11969771
    Abstract: A method of fabricating a film vibration device, including: photoetching a surface of a silicon wafer to form a circular-hole array; etching an aluminum layer on the silicon wafer; etching the silicon wafer to form a through-hole array to obtain a porous silicon wafer; attaching a polyethylene terephthalate (PET) sheet to a side of the porous silicon wafer; ablating the PET sheet to obtain a porous PET film; attaching a polyvinylidene fluoride (PVDF) film to a lower side of the porous silicon wafer; performing vacuumization above the porous silicon wafer, while heating the PVDF film below the porous silicon wafer to create dome micro-structures on the PVDF film; and laminating the porous PET film on each of two sides of the PVDF film to obtain the film vibration device. This application also provides a cleaning device having the film vibration device.
    Type: Grant
    Filed: July 26, 2023
    Date of Patent: April 30, 2024
    Assignee: Guangdong University of Technology
    Inventors: Yun Chen, Biao Li, Aoke Song, Shankun Dong, Shengbao Lai, Maoxiang Hou, Xin Chen
  • Patent number: 11963450
    Abstract: A method for manufacturing a core-shell coaxial gallium nitride (GaN) piezoelectric nanogenerator is provided. A mask covering a center part of a gallium nitride wafer is removed. An electrodeless photoelectrochemical etching is performed on the gallium nitride wafer to form a primary GaN nanowire array on a surface of the gallium nitride wafer. A precious metal layer provided on the surface of the gallium nitride wafer is removed and an alumina layer is deposited on the surface of the gallium nitride wafer to cover the primary GaN nanowire array to obtain a core-shell coaxial GaN nanowire array. A first conductive layer is provided on a flexible substrate to which the core-shell coaxial GaN nanowire array is transferred. A second conductive layer is provided at a top end of the core-shell coaxial GaN nanowire array, and is connected to an external circuit to obtain the core-shell coaxial GaN piezoelectric nanogenerator.
    Type: Grant
    Filed: August 11, 2023
    Date of Patent: April 16, 2024
    Assignee: Guangdong University of Technology
    Inventors: Yun Chen, Pengfei Yu, Aoke Song, Zijian Li, Maoxiang Hou, Xin Chen
  • Publication number: 20230390746
    Abstract: This application discloses a silicon carbide (SiC)-loaded graphene photocatalyst for hydrogen production under visible light irradiation and a preparation method thereof. Pure SiC and pure black carbon are respectively prepared and mixed to obtain a mixture with a resistance less than 100?. Then the mixture was vacuumized and processed with a current pulse with an increasing voltage until a breakdown occurs, and subjected to ultrasonic stirring, centrifugal washing and vacuum drying in turn to obtain the SiC-loaded graphene photocatalyst. By means of the current pulse, a heterojunction is formed between SiC and graphene to improve the catalytic activity of the photocatalyst; and the photocatalytic hydrogen production rate of SiC nanoparticles can be enhanced after loaded on the graphene.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 7, 2023
    Inventors: Yun CHEN, Shengbao LAI, Biao LI, Zuohui LIU, Guanhai WEN, Maoxiang HOU, Xin CHEN
  • Publication number: 20230389431
    Abstract: A core-shell coaxial gallium nitride piezoelectric nanogenerator includes a core-shell coaxial gallium nitride nanowire array and a flexible substrate. A first conductive layer is provided on a surface of the flexible substrate. The core-shell coaxial gallium nitride nanowire array is fixed to the flexible substrate. A top end of the core-shell coaxial gallium nitride nanowire array is provided with a second conductive layer. The first conductive layer and the second conductive layer are both connected to an external circuit via a wire. A nanowire of the core-shell coaxial gallium nitride nanowire array is covered with an alumina layer. A method for preparing the core-shell coaxial gallium nitride piezoelectric nanogenerator is further provided. The gallium nitride nanowire array is formed by electrodeless photoelectrochemical etching.
    Type: Application
    Filed: August 11, 2023
    Publication date: November 30, 2023
    Inventors: Yun CHEN, Pengfei YU, Aoke SONG, Zijian LI, Maoxiang HOU, Xin CHEN
  • Publication number: 20230364657
    Abstract: A method of fabricating a film vibration device, including: photoetching a surface of a silicon wafer to form a circular-hole array; etching an aluminum layer on the silicon wafer; etching the silicon wafer to form a through-hole array to obtain a porous silicon wafer; attaching a polyethylene terephthalate (PET) sheet to a side of the porous silicon wafer; ablating the PET sheet to obtain a porous PET film; attaching a polyvinylidene fluoride (PVDF) film to a lower side of the porous silicon wafer; performing vacuumization above the porous silicon wafer, while heating the PVDF film below the porous silicon wafer to create dome micro-structures on the PVDF film; and laminating the porous PET film on each of two sides of the PVDF film to obtain the film vibration device. This application also provides a cleaning device having the film vibration device.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Yun CHEN, Biao LI, Aoke SONG, Shankun DONG, Shengbao LAI, Maoxiang HOU, Xin CHEN
  • Patent number: 11745160
    Abstract: A method of fabricating a magnetically-controlled graphene-based micro-/nano-motor includes: (a) mixing FeCl3 crystal powder with deionized water to obtain a FeCl3 solution; (b) completely immersing a carbon-based microsphere in the FeCl3 solution; transferring the carbon-based microsphere from the FeCl3 solution followed by heating to allow crystallization of FeCl3 on the surface of the carbon-based microsphere to obtain a FeCl3-carbon-based microsphere; (c) heating the FeCl3-carbon-based microsphere in a vacuum chamber until there is no moisture in the vacuum chamber; continuously removing gas in the vacuum chamber and introducing oxygen; and treating the FeCl3-carbon-based microsphere with a laser in an oxygen-enriched environment to obtain the magnetically controlled graphene-based micro-/nano-motor. A magnetically-controlled graphene-based micro-/nano-motor is further provided.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: September 5, 2023
    Assignee: Guangdong University of Technology
    Inventors: Yun Chen, Yuanhui Guo, Bin Xie, Lu Yan, Maoxiang Hou, Xin Chen
  • Publication number: 20230048134
    Abstract: A method of fabricating a magnetically-controlled graphene-based micro-/nano-motor includes: (a) mixing FeCl3 crystal powder with deionized water to obtain a FeCl3 solution; (b) completely immersing a carbon-based microsphere in the FeCl3 solution; transferring the carbon-based microsphere from the FeCl3 solution followed by heating to allow crystallization of FeCl3 on the surface of the carbon-based microsphere to obtain a FeCl3-carbon-based microsphere; (c) heating the FeCl3-carbon-based microsphere in a vacuum chamber until there is no moisture in the vacuum chamber; continuously removing gas in the vacuum chamber and introducing oxygen; and treating the FeCl3-carbon-based microsphere with a laser in an oxygen-enriched environment to obtain the magnetically controlled graphene-based micro-/nano-motor. A magnetically-controlled graphene-based micro-/nano-motor is further provided.
    Type: Application
    Filed: October 19, 2022
    Publication date: February 16, 2023
    Inventors: Yun CHEN, Yuanhui GUO, Bin XIE, Lu YAN, Maoxiang HOU, Xin CHEN
  • Patent number: 11211357
    Abstract: A method for processing an ultra-high density interconnect wire under light source guidance, comprising preparing a photo-thermal response conductive paste, and putting it into an air pressure injector; driving the air pressure injector; the air pressure injector extrudes the photo-thermal response conductive paste, so that the photo-thermal response conductive paste is connected with the first chip to form an interconnection wire; stopping extruding the photo-thermal response conductive paste, and driving the air pressure injector to pull off the interconnection wire; a linear light source emits light and irradiates on the interconnection wire to bend to an upper side of a second chip bonding pad; an extrusion mechanism presses a free end of the interconnection wire on the second chip bonding pad; the first chip and the second chip are subjected to glue dripping encapsulation.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 28, 2021
    Assignee: GUANGDONG UNIVERSITY OF TECHNOLOGY
    Inventors: Yun Chen, Shuquan Ding, Yunbo He, Maoxiang Hou, Xin Chen, Jian Gao, Ni Zhao, Lanyu Zhang, Zhengping Wang
  • Publication number: 20210210461
    Abstract: A method for processing an ultra-high density interconnect wire under light source guidance, comprising preparing a photo-thermal response conductive paste, and putting it into an air pressure injector; driving the air pressure injector; the air pressure injector extrudes the photo-thermal response conductive paste, so that the photo-thermal response conductive paste is connected with the first chip to form an interconnection wire; stopping extruding the photo-thermal response conductive paste, and driving the air pressure injector to pull off the interconnection wire; a linear light source emits light and irradiates on the interconnection wire to bend to an upper side of a second chip bonding pad; an extrusion mechanism presses a free end of the interconnection wire on the second chip bonding pad; the first chip and the second chip are subjected to glue dripping encapsulation.
    Type: Application
    Filed: September 30, 2020
    Publication date: July 8, 2021
    Inventors: Yun CHEN, Shuquan DING, Yunbo HE, Maoxiang HOU, Xin CHEN, Jian GAO, Ni ZHAO, Lanyu ZHANG, Zhengping WANG
  • Publication number: 20210166981
    Abstract: The disclosure relates to a method for repairing an internal circuit break defect in a chip, including: S1, detecting the defect position of the chip and the type and performance parameters of a filling material; S2, positioning the chip on a two-dimensional motion platform; S3, setting parameters of two beams of laser; adjusting a focal length of the two beams of laser three-dimensional incident angle and a Z axis, so that a focus point of the two beams of laser irradiate any end of the circuit break of the chip; S4, the two-dimensional motion platform drives the chip to move, so that the focus point of the two beams of laser is moved to an other end of the circuit break, and an moving trajectory of the focus point of the two beams of laser feeds through the two ends of the circuit break of the chip.
    Type: Application
    Filed: September 30, 2020
    Publication date: June 3, 2021
    Inventors: Yun CHEN, Yao YAO, Shuquan DING, Junyu LONG, Maoxiang HOU, Dachuang SHI, Xin CHEN, Jian GAO, Qiang LIU, Lanyu ZHANG, Yunbo HE, Shenghui ZHANG, Zhengping WANG