Patents by Inventor Marc M. Jalisi

Marc M. Jalisi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150003789
    Abstract: The invention is directed to devices and methods for passing optical radiation into and out of a body lumen. In particular, the invention is directed to a rotatable ferrule for use in an optical guidewire and methods for using a rotatable ferrule. The rotatable ferrule may be either rotatably captured by and free to rotate within a guidewire, or may rotate upon release from a releasable, mechanically stable friction-fit engagement with a guidewire. The invention is further directed to sterile interfaces for readily connecting and disconnecting an optical guidewire with and from other optical instrumentation while maintaining the sterility of the guidewire, and methods for using a sterile interface device. The invention is also directed to interface devices that provide either direct or indirect optical and mechanical connection between an optical guidewire and peripheral instrumentation.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: William E. Webler, Andrej M. Chudy, Marc M. Jalisi, Kevin M. Phillips, Michael D. Whitt, Susan Norton
  • Patent number: 8845519
    Abstract: Devices and methods for passing optical radiation into and out of a body lumen may include a rotatable ferrule for use in an optical guidewire and methods for using a rotatable ferrule. The rotatable ferrule may be either rotatably captured by and free to rotate within a guidewire, or may rotate upon release from a releasable, mechanically stable friction-fit engagement with a guidewire. Sterile interfaces for readily connecting and disconnecting an optical guidewire with and from other optical instrumentation while maintaining the sterility of the guidewire, and methods for using a sterile interface device are disclosed. Interface devices can be used to provide either direct or indirect optical and mechanical connection between an optical guidewire and peripheral instrumentation.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: September 30, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: William E. Webler, Andrej M. Chudy, Marc M. Jalisi, Kevin M. Phillips, Michael D. Whitt, Susan Norton
  • Patent number: 8708933
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: April 29, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Wayne E. Cornish, John Schreiner, James M. Jacob, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Patent number: 8308660
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 13, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Wayne E. Cornish, John F. Schreiner, James M. Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. B. Stalker, Olin J. Palmer
  • Patent number: 8226577
    Abstract: The present invention is directed to an intracorporeal device, preferably a guidewire, and method for making the device. The guidewire of the present invention is formed, at least in part, of a composite elongate core formed, at least in part, of precipitation hardened material. The elongate core members of the present invention will have an ultimate tensile strength and modulus of elasticity greater than the same for an identically dimensioned elongate member formed from superelastic NITINOL alone.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: July 24, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Marc M. Jalisi, David M. Anderson, Wayne E. Cornish, Nancy A. Nicotra, Mark T. Richardson
  • Publication number: 20110230840
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Patent number: 7972283
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 5, 2011
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Wayne E. Cornish, John F. Schreiner, James M. Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. B. Stalker, Olin J. Palmer
  • Patent number: 7878985
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: February 1, 2011
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Patent number: 7736301
    Abstract: Devices and methods for passing optical radiation into and out of a body lumen which can include a rotatable ferrule for use in an optical guidewire and methods for using a rotation ferrule. The rotatable ferrule may be either rotatably captured by and free to rotate within a guidewire, or may rotate upon release from a releasable, mechanically stable friction-fit engagement with a guidewire. Sterile interfaces for readily connecting and disconnecting an optical guidewire with and from other optical instrumentation while maintaining the sterility of the guidewire are provided as well as methods for using a sterile interface device. Interface devices can provide either direct or indirect optical and mechanical connection between an optical guidewire and peripheral instrumentation.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: June 15, 2010
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: William E. Webler, Andrej M. Chudy, Marc M. Jalisi, Kevin M. Phillips, Michael D. Whitt, Susan Norton
  • Publication number: 20100069721
    Abstract: The invention is directed to devices and methods for passing optical radiation into and out of a body lumen. In particular, the invention is directed to a rotatable ferrule for use in an optical guidewire and methods for using a rotatable ferrule. The rotatable ferrule may be either rotatably captured by and free to rotate within a guidewire, or may rotate upon release from a releasable, mechanically stable friction-fit engagement with a guidewire. The invention is further directed to sterile interfaces for readily connecting and disconnecting an optical guidewire with and from other optical instrumentation while maintaining the sterility of the guidewire, and methods for using a sterile interface device. The invention is also directed to interface devices that provide either direct or indirect optical and mechanical connection between an optical guidewire and peripheral instrumentation.
    Type: Application
    Filed: August 14, 2009
    Publication date: March 18, 2010
    Applicant: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
    Inventors: William E. Webler, Andrej M. Chudy, Marc M. Jalisi, Kevin M. Phillips, Michael D. Whitt, Susan Norton
  • Publication number: 20100004562
    Abstract: The present invention is directed to an intracorporeal device, preferably a guidewire, and method for making the device. The guidewire of the present invention is formed, at least in part, of a composite elongate core formed, at least in part, of precipitation hardened material. The elongate core members of the present invention will have an ultimate tensile strength and modulus of elasticity greater than the same for an identically dimensioned elongate member formed from superelastic NITINOL alone.
    Type: Application
    Filed: September 4, 2009
    Publication date: January 7, 2010
    Applicant: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Marc M. Jalisi, David M. Anderson, Wayne E. Cornish, Nancy A. Nicotra, Mark T. Richardson
  • Publication number: 20090062773
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Application
    Filed: March 12, 2008
    Publication date: March 5, 2009
    Applicant: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer
  • Patent number: 7494474
    Abstract: A guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal portion of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that is configured to produce a linear change in stiffness of the core over a longitudinal portion of the device. An embodiment has a plurality of radiopaque elements that may be intermittent, continuous or in the form of a helical ribbon for scaled measurement of intracorporeal structure under fluoroscopic imaging. Another embodiment has at least one layer of polymer over the distal end of the device.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: February 24, 2009
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Mark T. Richardson, David M. Anderson, Emmanuel C. Biagtan, Lawrence E. Brennan, David H. Burkett, Wayne E. Cornish, Robert C. Esselstein, James Jacobs, Marc M. Jalisi, Daryush P. Mirzaee, Olin J. Palmer, John Schreiner, Kent C. Stalker
  • Patent number: 7455646
    Abstract: A guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal portion of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that is configured to produce a linear change in stiffness of the core over a longitudinal portion of the device. An embodiment has a plurality of radiopaque elements that may be intermittent, continuous or in the form of a helical ribbon for scaled measurement of intracorporeal structure under flouroscopic imaging. Another embodiment has at least one layer of polymer over the distal end of the device.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: November 25, 2008
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Mark T. Richardson, David M. Anderson, Emmanuel C. Biagtan, Lawrence E. Brennan, David H. Burkett, Wayne E. Cornish, Robert C. Esselstein, James Jacobs, Marc M. Jalisi, Daryush P. Mirzaee, Olin J. Palmer, John Schreiner, Kent C. Stalker
  • Publication number: 20080262600
    Abstract: A composite stent having a substrate tube made of stainless steel, a nickel-cobalt-chromium-molybdenum alloy, or chonichrome with at least one metal cladding tube is disclosed. Specifically, the substrate tube is placed within a metal cladding tube made of platinum, gold, tantalum, tungsten, platinum-iridium, palladium, or nickel-titanium, preferably with an interference fit therebetween. The composite, laminate tube then undergoes a series of rolling or cold drawing processes interspersed with heat treating to release built up stresses. When the final diameter of the laminate tube is reached, the cladding has been laminated to the exterior of the substrate tube by a bond generated from the rolling and/or cold drawing operations. The finished laminate tube is then cut by laser cutting or chemical etching to form a suitable stent pattern.
    Type: Application
    Filed: October 30, 2007
    Publication date: October 23, 2008
    Inventor: Marc M. Jalisi
  • Publication number: 20080146967
    Abstract: A guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal portion of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that is configured to produce a linear change in stiffness of the core over a longitudinal portion of the device. An embodiment has a plurality of radiopaque elements that may be intermittent, continuous or in the form of a helical ribbon for scaled measurement of intracorporeal structure under fluoroscopic imaging. Another embodiment has at least one layer of polymer over the distal end of the device.
    Type: Application
    Filed: July 31, 2003
    Publication date: June 19, 2008
    Inventors: Mark T. Richardson, David M. Anderson, Emmanuel C. Biagtan, Lawrence E. Brennan, David H. Burkett, Wayne E. Cornish, Robert C. Esselstein, James Jacobs, Marc M. Jalisi, Daryush P. Mirzaee, Olin J. Palmer, John Schreiner, Kent C. Stalker
  • Patent number: 7335227
    Abstract: A composite stent having a substrate tube made of stainless steel, a nickel-cobalt-chromium-molybdenum alloy, or chonichrome with at least one metal cladding tube is disclosed. Specifically, the substrate tube is placed within a metal cladding tube made of platinum, gold, tantalum, tungsten, platinum-iridium, palladium, or nickel-titanium, preferably with an interference fit therebetween. The composite, laminate tube then undergoes a series of rolling or cold drawing processes interspersed with heat treating to release built up stresses. When the final diameter of the laminate tube is reached, the cladding has been laminated to the exterior of the substrate tube by a bond generated from the rolling and/or cold drawing operations. The finished laminate tube is then cut by laser cutting or chemical etching to form a suitable stent pattern.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: February 26, 2008
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Marc M. Jalisi
  • Patent number: 6974557
    Abstract: Optical windows for intracorporeal devices, intracorporeal devices comprising a window and a method for forming a window for an intracorporeal device are provided. The method comprises placing within a mold an assembly comprising a mandrel located within a pair of parts separated by a collar of window material, heating the window preform effective to cause the window material to soften, and applying force to urge together the pair of parts to deform the window material so as to form a window. The intracorporeal devices, such as imaging devices, include guidewires, catheters, endoscopes. In addition, the method is suitable for joining plastic parts to other parts, such as metal and ceramic parts.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: December 13, 2005
    Assignee: Advanced Cardiovasculer Systems, Inc.
    Inventors: William E. Webler, Michael D. Whitt, Marc M. Jalisi, Andrej M. Chudy, Kevin M. Phillips, Marc L. Speck
  • Publication number: 20040106982
    Abstract: A composite stent having a substrate tube made of stainless steel, a nickel-cobalt-chromium-molybdenum alloy, or chonichrome with at least one metal cladding tube is disclosed. Specifically, the substrate tube is placed within a metal cladding tube made of platinum, gold, tantalum, tungsten, platinum-iridium, palladium, or nickel-titanium, preferably with an interference fit therebetween. The composite, laminate tube then undergoes a series of rolling or cold drawing processes interspersed with heat treating to release built up stresses. When the final diameter of the laminate tube is reached, the cladding has been laminated to the exterior of the substrate tube by a bond generated from the rolling and/or cold drawing operations. The finished laminate tube is then cut by laser cutting or chemical etching to form a suitable stent pattern.
    Type: Application
    Filed: July 10, 2003
    Publication date: June 3, 2004
    Inventor: Marc M. Jalisi
  • Publication number: 20040059259
    Abstract: The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 25, 2004
    Applicant: Advanced Cardiovascular Systems, Inc.
    Inventors: Wayne E. Cornish, John Schreiner, James Jacobs, Marc M. Jalisi, Mark T. Richardson, Kent C. Stalker, Olin J. Palmer