Patents by Inventor Marc Paul Saes

Marc Paul Saes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147589
    Abstract: A multi-channel LED driver for driving an LED fixture, wherein the multi-channel LED driver comprising a plurality of output channels, wherein each output channel is connectable to an LED or LED string of the LED fixture, the multi-channel LED driver comprising: a plurality of power converters, each power converter being associated with an output channel of the plurality of output channels, wherein each power converter comprises a switch, and wherein each power converter converts an input power at an input terminal to a current at a respective output channel of the multi-channel LED driver, a comparator configured to compare a current signal representing the current measured at an output channel by a current measurement element with a reference signal representing a current set point for the output channel, and wherein the comparator generates an output signal to control the switch of the power converter associated with the output channel, a controller arranged to determine successive, for each of the plur
    Type: Application
    Filed: January 26, 2022
    Publication date: May 2, 2024
    Applicant: eldoLAB Holding B.V.
    Inventors: Marc Paul SAES, Franciscus Bernardus Marie VAN HORCK, Tijs VERSTEEGDE
  • Patent number: 9784805
    Abstract: The invention relates to a nuclear magnetic resonance imaging radio frequency-receiver (112; 216; 308; 404), the receiver (112; 216; 308; 404) being adapted to receive analog signals from at least one radio frequency receiver coil unit (106; 200; 202; 300; 400; 402), the radio frequency receiver (112; 216; 308; 404) comprising: an analog-digital converter (118; 226) to convert the analog pre-amplified magnetic resonance signal into a digital signal, means (120; 230) for digital down converting the digital signal and a first communication interface (130; 252) adapted for transmitting the down converted digital signal via a communication link (e.g. wireless, optical or wire-bound).
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: October 10, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Marc Paul Saes, Johan Samuel Van Den Brink, Filips Van Liere, Roel Penterman, Ralph Kurt, Emiel Peeters, Dirk Jan Broer, Michel Paul Barbara Van Bruggen, Hans Van Zon, Miha Fuderer
  • Patent number: 8598874
    Abstract: A magnetic resonance system includes a wireless local coil which functions as a transmit only or a transmit and receive coil. The local coil includes an RF coil with a plurality of coil elements. A corresponding number of transmit amplifiers apply RF signals to the RF coil elements to transmit an RF signal. A peak power supply provides electrical power to the transmit amplifiers to transmit relatively high power RF pulses. A trickle charging device recharges the peak power supply between RF pulses front a local coil power supply. A power transfer device wirelessly transfers power to a coil power supply recharging device which recharges the local coil power supply.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 3, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Marc Paul Saes, Marinus Johannes Adrianus Maria van Helvoort
  • Patent number: 8548560
    Abstract: A data rate controlling feedback loop evaluates an actual instantaneous available quality of service of a communication link for transmitting data and controls the data rate based on an evaluation result, Feedback control may both be local to a device for acquiring examination data, such as a magnetic resonance imaging coil, or over the communication link by reducing the data rate at least momentarily to fit the communication link's performance over time, enabling a graceful degradation of an image quality at lower data rates.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 1, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Marc Paul Saes, Filips Van Liere, Marinus Johannes Adrianus Maria Van Helvoort
  • Patent number: 8155101
    Abstract: A method and an arrangement for uni- or bidirectional wireless communication of signals or data especially in a reflective environment like a MR imaging system, between at least one first transmitter and/or receiver unit (501, 601, 701; T/R1) and at least one second transmitter and/or receiver unit (801; T/R2) is disclosed. The reliability and availability of the communication link especially in a highly reflective environment is improved especially by using spread spectrum technology and ultra wide band carrier frequencies.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: April 10, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Marinus Johannes Adrianus Maria Van Helvoort, Jeff Bennett, Marc Paul Saes, Lambertus De Vries, Johannes Hendrik Den Boef, Robert Paul Kleihorst, Dagnachew Birru
  • Publication number: 20110103491
    Abstract: The present invention relates to a data rate controlling feedback loop (355, 360) that can evaluate an actual instantaneous available quality of service of a communication link (345) for transmitting data and control the data rate based on an evaluation result. Feedback control may both be local to a device for acquiring examination data such as e.g. a magnetic resonance imaging coil or over the communication link by reducing the data rate at least momentarily to fit the communication link's performance over time, enabling a graceful degradation of an image quality at lower data rates.
    Type: Application
    Filed: May 28, 2009
    Publication date: May 5, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marc Paul Saes, Filips Van Liere, Marinus Johannes Adrianus Maria Van Helvoort
  • Publication number: 20110012598
    Abstract: A radio frequency coil comprises: a coil unit (30, 100) including one or more conductive radio frequency receive elements (32, 110) tuned to receive a magnetic resonance signal and an on-board active electronic component (34, 114, 118) operatively coupled with the one or more conductive radio frequency receive elements; and a power coupling element (40, 46, 134, 138, 140) configured to non-conductively receive electrical power from a power delivery element (44, 132, 136) during a magnetic resonance acquisition session to power the on-board active electronic component (114, 118) during the magnetic resonance acquisition session (e.g. wirelessly by inductive coupling or by capacitive coupling). In some embodiments, the power coupling element (134, 138, 140) is a component of the coil unit (102), and the radio frequency coil further comprises a base coil unit (104) including the power delivery element (132, 136) operatively combinable with the coil unit (102) to define an annular coil.
    Type: Application
    Filed: November 27, 2008
    Publication date: January 20, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marinus Johannes Adrianus Maria van Helvoort, Johan Samuel van den Brink, Marc Paul Saes, Alexander Christiaan de Rijck, Klaas Jacob Lulofs
  • Publication number: 20100308826
    Abstract: A magnetic resonance system (10) includes a wireless local coil (22) which functions as a transmit only or a transmit and receive coil. The local coil includes an RF coil (50) with a plurality of coil elements (501, 50a). A corresponding number of transmit amplifiers (581, 58a) apply RF signals to the RF coil elements to transmit an RF signal. A peak power supply (56) provides electrical power to the transmit amplifiers to transmit relatively high power RF pulses. A trickle charging device (66) recharges the peak power supply between RF pulses from a local coil power supply (60). A power transfer device (64) wirelessly transfers power to a coil power supply recharging device (62) which recharges the local coil power supply (60).
    Type: Application
    Filed: December 22, 2008
    Publication date: December 9, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marc Paul Saes, Marinus Johannes Adrianus Maria van Helvoort
  • Publication number: 20100259261
    Abstract: The invention relates to a nuclear magnetic resonance imaging radio frequency—receiver (112; 216; 308; 404), the receiver (112; 216; 308; 404) being adapted to receive analogue signals from at least one radio frequency receiver coil unit (106; 200; 202; 300; 400; 402), the radio frequency receiver (112; 216; 308; 404) comprising: an analogue-digital converter (118; 226) to convert the analogue pre-amplified magnetic resonance signal into a digital signal, means (120; 230) for digital down converting the digital signal and a first communication interface (130; 252) adapted for transmitting the down converted digital signal via a communication link (e.g. wireless, optical or wire-bound).
    Type: Application
    Filed: June 16, 2008
    Publication date: October 14, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marc Paul Saes, Johan Samuel Van Den Brink, Filips Van Liere, Roel Penterman, Ralph Kurt, Emiel Peeters, Dirk Broer, Michel Paul Barbara Van Bruggen, Hans Van Zon, Miha Fuderer
  • Patent number: 7777490
    Abstract: A radio frequency antenna comprising a resonant pickup circuit (102) arranged to pick up a magnetic resonance signal, an analog-to-digital converter (105) arranged to convert the magnetic resonance signal to digital data, and a frequency converter arranged to convert a primary band of frequencies of the digital data. By upshifting the frequency of the transmitted bit-stream, it is possible to RF-trap the transmission channel (109) by simple high-pass filtering techniques. In case the transmitted bit pattern has frequency components that approach the resonance frequency, an encoding technique like Manchester encoding can be used to eliminate unwanted signals.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: August 17, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Paulus Cornelius Hendrikus Adrianus Haans, Marc Paul Saes, Gosta Jakob Ehnholm
  • Patent number: 7746072
    Abstract: The present invention relates to a magnetic resonance imaging system, to a magnetic resonance imaging method for operating a magnetic resonance imaging system and to a computer program for operating a magnetic resonance imaging system.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: June 29, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Marinus Johannes Adrianus Maria Van Helvoort, Marc Paul Saes, Johan Samuel Van Den Brink, Robert Paul Kleihorst, Paulus Cornelius Hendrikus Adrianus Haans
  • Publication number: 20100090699
    Abstract: A radio-frequency (RF) coil array for receiving magnetic resonance (MR) signals wherein the RF coil array (402) comprises at least one RF receive coil with an associated electronic circuit, a rechargeable electrical storage device arranged to supply electrical power to the associated electronic circuit, and a charging circuit arranged to charge the rechargeable electrical storage device, wherein the charging circuit includes a switching circuit (102SW1, 102SW2, 104SW1, 104SW2, 106SW1, 106SW2, 108SW1, 108SW2) configured to electrically isolate the charging circuit from the RF coil array at least when the RF receive coil is receiving MR signal. During a time period when the RF receive coil is not receiving MR signal and/or when another RF coil is not transmitting RF signals in the presence of the RF receive coil, the switching circuit switches the charging circuit to an ON state which enables the charging circuit to charge the rechargeable electrical storage device.
    Type: Application
    Filed: December 20, 2007
    Publication date: April 15, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Paulus Cornelius Hendrikus Adrianus Haans, Marc Paul Saes
  • Publication number: 20090121717
    Abstract: A radio frequency antenna comprising a resonant pickup circuit (102) arranged to pick up a magnetic resonance signal, an analog-to-digital converter (105) arranged to convert the magnetic resonance signal to digital data, and a frequency converter arranged to convert a primary band of frequencies of the digital data. By upshifting the frequency of the transmitted bit-stream, it is possible to RF-trap the transmission channel (109) by simple high-pass filtering techniques. In case the transmitted bit pattern has frequency components that approach the resonance frequency, an encoding technique like Manchester encoding can be used to eliminate unwanted signals.
    Type: Application
    Filed: October 10, 2006
    Publication date: May 14, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Paulus Cornelius Hendrikus Adrianus Haans, Marc Paul Saes, Gosta Jakob Ehnholm
  • Publication number: 20080259897
    Abstract: A method and an arrangement for uni- or bidirectional wireless communication of signals or data especially in a reflective environment like a MR imaging system, between at least one first transmitter and/or receiver unit (501, 601, 701; T/R1) and at least one second transmitter and/or receiver unit (801; T/R2) is disclosed. The reliability and availability of the communication link especially in a highly reflective environment is improved especially by using spread spectrum technology and ultra wide band carrier frequencies.
    Type: Application
    Filed: December 20, 2006
    Publication date: October 23, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Marinus Johannes Adrianus Maria Van Helvoort, Jeff Bennett, Marc Paul Saes, Lambertus De Vries, Johannes Hendrik Den Boef, Robert Paul Kleihorst, Dagnachew Birru
  • Publication number: 20080191695
    Abstract: The present invention relates to a magnetic resonance imaging system, to a magnetic resonance imaging method for operating a magnetic resonance imaging system and to a computer program for operating a magnetic resonance imaging system.
    Type: Application
    Filed: March 20, 2006
    Publication date: August 14, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Marinus Johannes Adrianus Maria Van Helvoort, Marc Paul Saes, Johan Samuel Van Den Brink, Robert Paul Kleihorst, Paulus Cornelius Hendrikus Adrianus Haans