Patents by Inventor Marc S. Newkirk

Patent number: 5633213
Abstract: There is disclosed a method for producing a self-supporting ceramic body by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
Type: Grant
Filed: February 21, 1995
Issued: May 27, 1997
Assignee: Lanxide Technology Company, LP
Inventors: Michael K. Aghajanian, Marc S. Newkirk, Christopher R. Kennedy, Robert C. Kantner, Michael A. Rocazella, Jerry G. Weinstein, Danny R. White, Gerhard H. Schiroky, William B. Johnson
Patent number: 5618635
Abstract: The present invention relates to the formation of a macrocomposite body by spontaneously infiltrating a permeable mass of filler material or a preform with molten matrix metal and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body and/or a metal or metal containing body. Particularly, an infiltration enhancer and/or infiltration enhancer precursor and/or infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Moreover, prior to infiltration, the filler material or preform is placed into contact with at least a portion of a second material such that after infiltation of the filler material or preform, the infiltrated material is bonded to the second material, thereby forming a macrocomposite body.
Type: Grant
Filed: March 27, 1995
Issued: April 8, 1997
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Danny R. White, Christopher R. Kennedy, Alan S. Nagelberg, Michael K. Aghajanian, Robert J. Wiener
Patent number: 5585190
Abstract: The present invention relates to a novel process for forming thin metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltrating atmosphere are in communication with a filler material or preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the application of any pressure or vacuum. In an embodiment of the present invention, the filler material may be sprayed upon a thin sheet of matrix metal. Alternatively, the filler material may be shaped via tape casting, slip casting, etc. to provide a thin preform. In another embodiment of the present invention, a body of matrix metal may be coated with a filler material such that upon spontaneous infiltration a metal matrix composite body is produced which inversely replicates the configuration of the original body of matrix metal.
Type: Grant
Filed: January 24, 1994
Issued: December 17, 1996
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Michael K. Aghajanian, Gregory E. Hannon, Allyn L. McCormick, Gerhard H. Schiroky, Michael A. Rocazella, Robert C. Kantner
Patent number: 5541004
Abstract: The present invention relates to a novel method for forming metal matrix composite bodies and novel metal matrix composite bodies produced thereby. Particularly, a polycrystalline oxidation reaction product of a parent metal and an oxidant is first formed. The polycrystalline oxidation reaction product is thereafter comminuted into an appropriately sized filler material which can be placed into a suitable container or formed into a preform. The filler material or preform of comminuted polycrystalline oxidation reaction product is thereafter placed into contact with a matrix metal alloy in the presence of an infiltration enhancer, and/or an infiltration enhancer precursor and/or an infiltrating atmosphere, at least at some point during the process, whereupon the matrix metal alloy spontaneously infiltrates the filler material or preform. As a result of utilizing comminuted or crushed polycrystalline oxidation reaction product, enhanced infiltration (e.g., enhanced rate or amount) is achieved.
Type: Grant
Filed: September 9, 1994
Issued: July 30, 1996
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Michael K. Aghajanian
Patent number: 5529108
Abstract: The present invention relates to a novel process for forming thin metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltrating atmosphere are in communication with a filler material or preform, at least, at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the application of any pressure or vacuum. In an embodiment of the present invention, the filler material may be sprayed upon a thin sheet of matrix metal. Alternatively, the filler material may be shaped via tape casting, slip casting, etc. to provide a thin preform. In another embodiment of the present invention, a body of matrix metal may be coated with a filler material such that upon spontaneous infiltration a metal matrix composite body is produced which inversely replicates the configuration of the original body of matrix metal.
Type: Grant
Filed: January 8, 1993
Issued: June 25, 1996
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Michael K. Aghajanian, Gregory E. Hannon, Allyn L. McCormick, Gerhard H. Schiroky, Michael A. Rocazella, Robert C. Kantner
Patent number: 5523270
Abstract: The present invention broadly relates to novel complex oxidation reaction products such as perovskite bodies, including shaped complex oxidation reaction products. This invention also includes complex oxidation reaction products which exhibit superconducting properties.
Type: Grant
Filed: June 16, 1994
Issued: June 4, 1996
Assignee: Lanxide Technology Company, LP
Inventors: Robert A. Rapp, Andrew W. Urquhart, Alan S. Nagelberg, Marc S. Newkirk
Patent number: 5518061
Abstract: The present invention relates to modifying the properties of a metal matrix composite body by a post formation process treatment and/or a substantially contiguous modification treatment. The post formation process treatment may be applicable to a variety of metal matrix composite bodies produced by various techniques, and is particularly applicable to modifying the properties of a metal matrix composite body produced by a spontaneous infiltration technique. The substantially contiguous modification process may also be used primarily in conjunction with metal matrix composite bodies produced according to a spontaneous infiltration technique. Particularly, at least a portion of the matrix metal of the metal matrix composite body and/or the filler material of the metal matrix composite body is modified or altered during and/or after the formation process.
Type: Grant
Filed: February 22, 1994
Issued: May 21, 1996
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Andrew W. Urquhart, Michael K. Aghajanian, Mark G. Mortenson, Vilupanur A. Ravi, Alan S. Nagelberg
Patent number: 5516595
Abstract: The invention comprises a method of making self-supporting ceramic and ceramic composite structures by the oxidation reaction of a body of molten parent metal precursor with a vapor-phase oxidant to form an oxidation reaction product. This reaction or growth is continued to form a thick, self-supporting ceramic or ceramic composite body. The body is recovered and in a separate subsequent operation, at least a portion of a surface is coated with one or more materials in order to effect desired changes in the properties of the surface, e.g., hardness, corrosion resistance.
Type: Grant
Filed: November 16, 1994
Issued: May 14, 1996
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Adam J. Gesing, Michael A. Rocazella, Christopher R. Kennedy, Daniel J. Frydrych, Robert A. Wolffe, Paul V. Kelsey, Alvin P. Gerk
Patent number: 5494868
Abstract: A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal. The method includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surrounding bed of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated of the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold.
Type: Grant
Filed: January 3, 1994
Issued: February 27, 1996
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Andrew W. Urquhart, H. Daniel Lesher
Patent number: 5487420
Abstract: The present invention relates to a novel process for forming metal matrix composite bodies. Specifically, a metal which typically would not exhibit spontaneous infiltration properties under a given set of processing conditions can be induced to infiltrate a filler material or preform when combined or contacted with a matrix metal which does exhibit spontaneous infiltration properties. Stated more particularly, when an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, and a metal which, under the process conditions, ordinarily would not exhibit spontaneous infiltration, is combined with (e.g., alloyed, mixed with and/or exposed to) a matrix metal which does exhibit spontaneous infiltration behavior under the same processing conditions, the combination of metals will spontaneously infiltrate the filler material or preform.
Type: Grant
Filed: May 4, 1994
Issued: January 30, 1996
Assignee: Lanxide Technology Company, LP
Inventor: Marc S. Newkirk
Patent number: 5458480
Abstract: This invention relates generally to the fabrication of materials for use as tools in various applications. Specific emphasis is placed upon certain ceramic matrix composite materials and metal matrix composite materials for use as tools as well as certain ceramic matrix composite and/or metal matrix composite coatings on substrate materials, also for use as tools. This invention makes specific reference to a number of different materials for use as tools in the molding of thermoplastic materials (e.g., polymers, plastics, ceramics, glasses, metals) with particular emphasis being directed to the thermoplastic molding of plastics or polymers.
Type: Grant
Filed: October 6, 1993
Issued: October 17, 1995
Inventors: Marc S. Newkirk, Robert L. Simpson, Paul W. Niskanen, Eric M. Klier
Patent number: 5436209
Abstract: In the present invention, there is described a setup for producing a self-supporting ceramic body or ceramic composite by the oxidation of a parent metal to form a polycrystalline ceramic material comprising the oxidation reaction product of said parent metal with an oxidant, including a vapor-phase oxidant, and optionally one or more metallic constituents dispersed throughout the polycrystalline ceramic material. The setup is used with a method which comprises the steps of providing at least a portion of said parent metal with a barrier means at least partially spaced from said parent metal for establishing at least one surface of the ceramic body, and heating said parent metal to a temperature above its melting point but below the melting point of the oxidation reaction product to form a body of molten metal. At that temperature, the molten metal is reacted with the oxidant, thus forming the oxidation reaction product.
Type: Grant
Filed: August 16, 1993
Issued: July 25, 1995
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Robert C. Kantner
Patent number: 5433261
Abstract: Organometallic ceramic precursor binders are used to fabricate shaped bodies by different techniques. Exemplary shape making techniques which utilize hardenable, liquid, organometallic, ceramic precursor binders include the fabrication of negatives of parts to be made (e.g., sand molds and sand cores for metalcasting, etc.), as well as utilizing ceramic precursor binders to make shapes directly (e.g., brake shoes, brake pads, clutch parts, grinding wheels, polymer concrete, refractory patches and liners, etc.). A preferred embodiment of the invention involves the fabrication of preforms used in the formation of composite articles.
Type: Grant
Filed: September 15, 1993
Issued: July 18, 1995
Assignee: Lanxide Technology Company, LP
Inventors: Jonathan W. Hinton, Alexander Lukacs, III, James A. Jensen, Marc S. Newkirk, Michael K. Aghajanian, Ratnesh K. Dwivedi
Patent number: 5421087
Abstract: The present invention relates to a method of armoring a vehicle with a novel armor material. Particularly, a metal matrix composite body is formed with a filler material and an aluminum matrix metal, wherein the filler material comprises magnesia or titanium diboride and is present in an amount of at least 40 percent by volume. The metal matrix composite body is then placed on a portion of a vehicle.
Type: Grant
Filed: December 30, 1992
Issued: June 6, 1995
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Andrew W. Urquhart
Patent number: 5420085
Abstract: A method of making self-supporting ceramic composite structures having filler embedded therein includes infiltrating a permeable mass of filler with polycrystalline material comprising an oxidation reaction product obtained by oxidation of a parent metal such as aluminum and optionally, containing therein non-oxidized constituents of the parent metal. The structure is formed by placing a parent metal adjacent to a permeable filler and heating the assembly to melt the parent metal and provide a molten body of parent metal which is contacted with a suitable vapor-phase oxidant. Within a certain temperature region and optionally, aided by one or more dopants in or on the parent metal, molten parent metal will migrate through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow so as to embed the adjacent filler and provide the composite structure.
Type: Grant
Filed: January 21, 1993
Issued: May 30, 1995
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Harry R. Zwicker, Andrew W. Urquhart, Harold D. Lesher, Terry D. Claar, Michael K. Aghajanian, John P. Biel, Jr.
Patent number: 5358914
Abstract: A method of producing self-supporting ceramic composite bodies of desired shape by infiltrating a permeable self-support preform with polycrystalline matrix material comprising an oxidation reaction product obtained by oxidation of a parent metal precursor, such as aluminum, and optionally containing therein metallic constituents. The composite body is formed by contacting a zone of a permeable self-supporting preform, having at least one defined surface boundary spaced from said contacting zone, with a body of molten metal which is reacted with a suitable vapor-phase oxidant to form an oxidation reaction product.
Type: Grant
Filed: November 9, 1992
Issued: October 25, 1994
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Shirley L. Zwicker
Patent number: 5356720
Abstract: The present invention relates to self-supporting ceramics or ceramic composite bodies which include a polycrystalline ceramic material comprising the oxidation reaction product of a silicon parent metal with a nitrogenous oxidant, including a nitrogenous vapor-phase oxidant, and optionally, one or more metallic constituents dispersed throughout the polycrystalline ceramic material. A barrier means comprising, for example, at least one of titanium nitride, zirconium nitride, aluminum nitride and boron nitride or a barrier means that has undergone chemical changes or alterations may be removably attached to the self-supporting ceramics or ceramic composite bodies of the present invention.
Type: Grant
Filed: May 28, 1993
Issued: October 18, 1994
Assignee: Lanxide Technology Company, LP
Inventors: David K. Creber, William B. Johnson, Marc S. Newkirk
Patent number: 5340655
Abstract: In the present invention, there is provided a method for producing a self-supporting ceramic or ceramic composite body by the oxidation of a parent metal to form a polycrystalline ceramic material comprising the oxidation reaction product of said parent metal with an oxidant, including a vapor-phase oxidant, and optionally one or more metallic constituents dispersed throughout the polycrystalline ceramic material. The method comprises the steps of providing at least a portion of said parent metal with a barrier means at least partially spaced from said parent metal for establishing at least one surface of the ceramic body, and heating said parent metal to a temperature above its melting point but below the melting point of the oxidation reaction product to form a body of molten metal. At that temperature, the molten metal is reacted with the oxidant, thus forming the oxidation reaction product.
Type: Grant
Filed: January 9, 1992
Issued: August 23, 1994
Assignee: Lanxide Technology Company, LP
Inventors: David K. Creber, William B. Johnson, Marc S. Newkirk
Patent number: 5334562
Abstract: Self-supporting ceramic composite structures having filler embedded therein are taught as being produced by a method which includes infiltrating a permeable mass of filler with polycrystalline material comprising an oxidation reaction product obtained by oxidation of a parent metal such as aluminum and optionally containing therein non-oxidized constituents of the parent metal. The structure is formed by placing a parent metal adjacent to a permeable filler and heating the assembly to melt the parent metal and provide a molten body of parent metal which is contacted with a suitable vapor-phase oxidant. Within a certain temperature region and optionally aided by one or more dopants in or on the parent metal, molten parent metal will migrate through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow so as to embed the adjacent filler and provide the composite structure.
Type: Grant
Filed: February 16, 1993
Issued: August 2, 1994
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Andrew W. Urquhart, Harry R. Zwicker, H. Daniel Lesher
Patent number: 5329984
Abstract: The present invention relates to a novel process for forming a filler material which can be used in various metal matrix composite formation processes for forming metal matrix composite bodies. Particularly, an infiltration enhancer or an infiltration enhancer precursor or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum. The amount of matrix metal provided is sufficient only to coat, to a desired thickness, substantially all of the filler material. The coated filler material is thereafter comminuted for use in any desired metal matrix composite formation process.
Type: Grant
Filed: May 7, 1993
Issued: July 19, 1994
Assignee: Lanxide Technology Company, LP
Inventors: Marc S. Newkirk, Mark G. Mortenson