Patents by Inventor Marcel Aeschlimann

Marcel Aeschlimann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9962883
    Abstract: A reinforcement and/or lining method is provided, wherein a thermoplastic reinforcement and/or lining element is subject to mechanical energy impact and mechanical pressure by a tool so that reinforcement and/or lining material of the reinforcement and/or lining element is liquefied and pressed into porous material to reinforce the porous material. In at least one axial depth, the reinforcement and/or lining element is segmented as a function of the circumferential angle so that at this axial depth the circumferential wall of the initial opening in first regions is in contact with the reinforcement and/or lining element and in second regions is not in contact with the reinforcement and/or lining element.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: May 8, 2018
    Assignee: WOODWELDING AG
    Inventors: Jörg Mayer, Marcel Aeschlimann
  • Patent number: 9931165
    Abstract: A light diffuser, which is particularly suitable for introducing diffuse light into a tissue, is produced by interpenetration of a diffuser material in a liquid state into a boundary layer of a porous shaping material, by which process a diffuser surface is formed having a surface structure which represents essentially a negative of the pore structure of the shaping material and includes undercut structures induced by a surface tension. The light diffuser is e.g. produced by introducing a diffuser blank including material that is liquefiable through mechanical vibration into the shaping material and simultaneously stimulating it with mechanical vibrations, such that the liquefiable material liquefies at least there where it is in contact with the shaping material and is pressed into the shaping material. An in situ production of the diffuser is particularly advantageous for photodynamic therapy in bone tissue.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: April 3, 2018
    Assignee: WOODWELDING AG
    Inventors: Jorg Mayer, Marcel Aeschlimann, Laurent Torriani, Heinrich Walt
  • Patent number: 9924988
    Abstract: A method for locating a material having thermoplastic properties in pores of bone tissue includes providing a pin having the material having thermoplastic properties and a core, wherein the material having thermoplastic properties is arranged on the circumferential surface of the core constituting an outer region of the pin. An opening is provided in the bone tissue, and the pin is positioned at least partly in the opening. The outer region of the pin is then impinged with mechanical vibration energy for a time sufficient for liquefying at least part of the material having thermoplastic properties, and, in a liquefied state, pressing it into the pores of the bone tissue surrounding the opening. The vibration energy is stopped for a time sufficient for re-solidification of the liquefied material, and then the core is removed.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: March 27, 2018
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Antonino Lanci, Jörg Mayer
  • Publication number: 20180035989
    Abstract: An augmentation method is provided, wherein a thermoplastic augmentation element is subject to mechanical energy impact and mechanical pressure by a tool so that augmentation material of the augmentation element is liquefied and pressed into hard tissue to augment the hard tissue, wherein in at least one axial depth, the augmentation element is segmented as a function of the circumferential angle so that at this axial depth the circumferential wall of the initial opening in first regions is in contact with the augmentation element and in second regions is not in contact with the augmentation element.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 8, 2018
    Inventors: Jörg Mayer, Marcel Aeschlimann
  • Patent number: 9808229
    Abstract: An augmentation method is provided, wherein a thermoplastic augmentation element is subject to mechanical energy impact and mechanical pressure by a tool so that augmentation material of the augmentation element is liquefied and pressed into hard tissue to augment the hard tissue, wherein in at least one axial depth, the augmentation element is segmented as a function of the circumferential angle so that at this axial depth the circumferential wall of the initial opening in first regions is in contact with the augmentation element and in second regions is not in contact with the augmentation element.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: November 7, 2017
    Assignee: WOODWELDING AG
    Inventors: Jörg Mayer, Marcel Aeschlimann
  • Patent number: 9801673
    Abstract: An implant suitable for being anchored with the aid of mechanical vibration in an opening provided in bone tissue. The implant is compressible in the direction of a compression axis under local enlargement of a distance between a peripheral implant surface and the compression axis. The implant includes a coupling-in face which serves for coupling a compressing force and the mechanical vibrations into the implant, which coupling-in face is not parallel to the compression axis. The implant also includes a thermoplastic material which, in areas of the local distance enlargement, forms at least a part of the peripheral surface of the implant.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: October 31, 2017
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Mario Lehmann, Jörg Mayer
  • Publication number: 20170305073
    Abstract: A first object is anchored in a second object. The first object has a material with thermoplastic properties, and the second material has a material that is solid and is penetrable by the first material when in a liquefied state. The second object has an insertion face with an opening having a mouth in the insertion face, and the first object has an insert portion that for anchoring is placed in the opening or about the mouth thereof. For anchoring, energy suitable for liquefaction of the first material impinges in an amount and for a time sufficient for at least partial liquefaction of the first material and interpenetration of the first and second materials. The second object, around the opening, has an anisotropic strength with respect to forces perpendicular to the opening axis.
    Type: Application
    Filed: October 2, 2015
    Publication date: October 26, 2017
    Inventors: Mario Lehmann, Jörg Mayer, Marcel Aeschlimann, Laurent Torriani, Muthumariappan Sankaran, Håkan Käll
  • Publication number: 20170297271
    Abstract: A joining element has an anchoring portion for in-depth anchoring in the object and a head portion arranged proximally of the anchoring portion with respect to an insertion axis. The head portion has a lateral outer surface that has a structure that is well-defined, especially within tight tolerances. The joining element is positioned relative to an object of a non-liquefiable material such that the anchoring portion reaches into an opening of the object or is placed adjacent a mouth thereof. Then, the joining element is pressed towards a distal direction, to press the anchoring portion into the opening, while mechanical vibration energy is coupled into the joining element by a tool, in an amount and for a time sufficient for liquefaction of a portion of the thermoplastic material to cause interpenetration of the thermoplastic material into structures of the object.
    Type: Application
    Filed: October 2, 2015
    Publication date: October 19, 2017
    Applicants: Woodwelding AG, Inter IKEA Systems B.V.
    Inventors: Nihat Dizdar, Håkan Käll, Pontus Håkansson, Muthumariappan Sankaran, Mario Lehmann, Jörg Mayer, Laurent Torriani, Marcel Aeschlimann
  • Patent number: 9782268
    Abstract: An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: October 10, 2017
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Andrea Mueller, Thomas Knecht, Philipp Seiler, Urs Weber, Christopher Rast, Jörg Mayer, Stephanie Mehl, Milica Berra
  • Publication number: 20170277859
    Abstract: A tool for implementing a correction plan in an external fixation frame having a plurality of adjustment elements or screws, for example, generally includes a driver, a motor, a controller, and a processor. The driver is adapted to engage and rotate each of the screws. The motor is coupled the driver and adapted to rotate the driver. The controller is connected to the motor and configured to control operation of the motor. The a processor adapted configured to: receive correction plan data; receive identification data including information for identifying at least one of the plurality of screws; determine movement of at least one of the plurality of the screws based on the correction plan data and the identification data; and send signals indicative of the determined movement to the controller in order to rotate at least one of the plurality of screws according to a predetermined correction plan.
    Type: Application
    Filed: June 13, 2017
    Publication date: September 28, 2017
    Inventors: Vinzenz Andreas Burgherr, Adam John Edelhauser, Yves Stephane Crozet, Marcel Aeschlimann, Christoph Dworzak, Antonino Lanci, Markus Mast
  • Publication number: 20170266018
    Abstract: An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Marcel Aeschlimann, Laurent Torriani, Andrea Müller, Thomas Knecht, Philipp Seiler, Urs Weber, Christopher Rast, Jörg Mayer, Stephanie Mehl, Milica Berra
  • Publication number: 20170252082
    Abstract: A method for locating a material having thermoplastic properties in pores of bone tissue includes providing a pin having the material having thermoplastic properties and a core, wherein the material having thermoplastic properties is arranged on the circumferential surface of the core constituting an outer region of the pin. An opening is provided in the bone tissue, and the pin is positioned at least partly in the opening. The outer region of the pin is then impinged with mechanical vibration energy for a time sufficient for liquefying at least part of the material having thermoplastic properties, and, in a liquefied state, pressing it into the pores of the bone tissue surrounding the opening. The vibration energy is stopped for a time sufficient for re-solidification of the liquefied material, and then the core is removed.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 7, 2017
    Inventors: Marcel Aeschlimann, Laurent Torriani, Antonino Lanci, Jörg Mayer
  • Patent number: 9724206
    Abstract: An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: August 8, 2017
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Andrea Muller, Thomas Knecht, Philipp Seiler, Urs Weber, Christopher Rast, Jorg Mayer, Stephanie Mehl, Milica Berra
  • Patent number: 9724183
    Abstract: A surgical method is provided, the method including the steps of: providing an artificial or allograft flexible planar structure; providing an implant, the implant including material liquefiable by mechanical oscillation, exposing a surface region of hard tissue or hard tissue substitute material; positioning the implant on an exposed area of the hard tissue or hard tissue substitute material; and fastening the implant to the hard tissue or hard tissue substitute material by impinging the proximal end of the implant with mechanical oscillation and simultaneously pressing the implant against the hard tissue or hard tissue substitute material while the distal end of the implant protrudes into a cavity of the hard tissue or hard tissue substitute material and regions of the liquefiable material are in contact with the hard tissue or hard tissue substitute material, and thereby liquefying at least a portion of the liquefiable material, and letting the liquefiable material resolidify.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: August 8, 2017
    Assignee: WOODWELDING AG
    Inventors: Jörg Mayer, Urs Weber, Andrea Müller, Thomas Knecht, Philipp Seiler, Christopher Rast, Marcel Aeschlimann, Laurent Torriani
  • Patent number: 9688019
    Abstract: An anchoring method of anchoring an anchoring element in a construction object is provided, where a surface of which object has at least one of pores in a surface, structures in a surface (such as an arrangement of ridges with undercut), a inhomogeneous characteristic with makes the penetration of a surface by a liquid under pressure possible, thereby creating pores filed by the liquid underneath the surface, and of a cavity. The method includes the steps of: providing a first element and a second element, the first element comprising a thermoplastic material; positioning the first element in a vicinity of said surface and/or of said cavity, respectively, and positioning the second element in contact with the first element; and causing a third element to vibrate while loading the first element with a force, thereby applying mechanical vibrations to the first element, and simultaneously loading the first element with a counter-force by the second element.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: June 27, 2017
    Assignee: WOODWELDING AG
    Inventors: Mario Lehmann, Laurent Torriani, Jorg Mayer, Marcel Aeschlimann
  • Patent number: 9662159
    Abstract: An ultrasonic handpiece is used for augmenting a bone screw. The handpieces comprise a housing, an ultrasonic converter shiftingly accommodated in the housing, and a sonotrode connected to one end of the ultrasonic converter. The sonotrode protrudes from the housing into the bone screw. An adjuster wheel is adjustably connected to the housing. A spring is provided the ends of which are supported by the ultrasonic converter and the adjuster wheel, respectively. The ultrasonic converter is preloaded in the direction away from the adjuster wheel by setting the adjuster wheel, thereby the sonotrode is urged with a selected force into the bone screw and the augmentation material is pressed out of the bone screw and into the bone.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 30, 2017
    Assignee: Stryker European Holdings I, LLC
    Inventors: Klaus Dorawa, Manuel Schwager, Marcel Aeschlimann, Philipp Seiler
  • Publication number: 20170128214
    Abstract: A human or animal joint is treated by introduction of a device between the suitably prepared articulating surfaces of the joint, and the device is anchored in both these articular surfaces with a material having thermoplastic properties. For allowing at least limited articulation of the joint after implantation, the device includes two articulating portions, wherein one of the articulating portions is anchored in each articulating surfaces of the joint. On implantation a proximal face of the device is contacted with a vibrating tool and the vibration is transmitted through parts of the device to locations in which the material having thermoplastic properties is near the bone tissue of the articulating surfaces of the joint and in which liquefaction is desired.
    Type: Application
    Filed: January 25, 2017
    Publication date: May 11, 2017
    Inventors: Jörg Mayer, Marcel Aeschlimann, Mario Lehmann, Andreas Wenger, Stephanie Goebel-Mehl
  • Patent number: 9615872
    Abstract: A method for locating a material having thermoplastic properties in pores of bone tissue includes providing a pin having the material having thermoplastic properties and a core, wherein the material having thermoplastic properties is arranged on the circumferential surface of the core constituting an outer region of the pin. An opening is provided in the bone tissue, and the pin is positioned at least partly in the opening. The outer region of the pin is then impinged with mechanical vibration energy for a time sufficient for liquefying at least part of the material having thermoplastic properties, and, in a liquefied state, pressing it into the pores of the bone tissue surrounding the opening. The vibration energy is stopped for a time sufficient for re-solidification of the liquefied material, and then the core is removed.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: April 11, 2017
    Assignee: WOODWELDING AG
    Inventors: Marcel Aeschlimann, Laurent Torriani, Antonino Lanci, Jörg Mayer
  • Patent number: 9585756
    Abstract: A human or animal joint is treated by introduction of a device between the suitably prepared articulating surfaces of the joint, and the device is anchored in both these articular surfaces with a material having thermoplastic properties. For allowing at least limited articulation of the joint after implantation, the device includes two articulating portions, wherein one of the articulating portions is anchored in each articulating surfaces of the joint. On implantation a proximal face of the device is contacted with a vibrating tool and the vibration is transmitted through parts of the device to locations in which the material having thermoplastic properties is near the bone tissue of the articulating surfaces of the joint and in which liquefaction is desired. The liquefied material penetrates the bone tissue and, on re-solidification forms a positive fit connection between the device and the bone tissue.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 7, 2017
    Assignee: SPINEWELDING AG
    Inventors: Jorg Mayer, Marcel Aeschlimann, Mario Lehmann, Andreas Wenger, Stephanie Goebel-Mehl
  • Publication number: 20170057183
    Abstract: A method of completing a fiber composite part includes the steps of providing a pre-manufactured fiber composite part, the fiber composite part including a structure of fibers embedded in a matrix of a resin, the resin being hardened; inspecting the composite part for portions of the structure of fibers that are insufficiently impregnated by the hardened resin; applying a preparation of a hardenable material to a surface portion where an identified structure portion of the structure of fibers that is insufficiently impregnated is exposed; applying mechanical vibration to the preparation applied to the surface portion to cause material of the preparation to impregnate the structure portion in a flowable state, and causing the material to solidify.
    Type: Application
    Filed: May 4, 2015
    Publication date: March 2, 2017
    Inventors: Jörg Mayer, Marcel Aeschlimann, Laurent Torriani, Patricia Poschner