Patents by Inventor Marcel Bruchez, Jr.

Marcel Bruchez, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7314764
    Abstract: A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation—when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: January 1, 2008
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Jr., Paul Alivisatos
  • Patent number: 7101718
    Abstract: A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation—when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: September 5, 2006
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Jr., Paul Alivisatos
  • Patent number: 6927069
    Abstract: A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation—when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: August 9, 2005
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Jr., Paul Alivisatos
  • Patent number: 6699723
    Abstract: A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation—when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: March 2, 2004
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Jr., Paul Alivisatos
  • Patent number: 6423551
    Abstract: A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation—when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: July 23, 2002
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Jr., Paul Alivisatos
  • Patent number: 5990479
    Abstract: A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: November 23, 1999
    Assignee: Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Jr., Paul Alivisatos