Patents by Inventor Marcin Walerysiak

Marcin Walerysiak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150243569
    Abstract: Techniques for controlling resistivity in the formation of a silicon ingot from compensated feedstock silicon material prepares a compensated, upgraded metallurgical silicon feedstock for being melted to form a silicon melt. The compensated, upgraded metallurgical silicon feedstock provides semiconductor predominantly of a single type (p-type or n-type) for which the process assesses the concentrations of boron and phosphorus and adds a predetermined amount of boron, phosphorus, aluminum and/or gallium. The process further melts the silicon feedstock with the boron, phosphorus, aluminum and/or gallium to form a molten silicon solution from which to perform directional solidification and maintains the homogeneity of the resistivity of the silicon throughout the ingot. A balanced amount of phosphorus can be optionally added to the aluminum and/or gallium. Resistivity may also be measured repeatedly during ingot formation, and additional dopant may be added in response, either repeatedly or continuously.
    Type: Application
    Filed: February 27, 2015
    Publication date: August 27, 2015
    Inventors: Fritz G. Kirscht, Marcin Walerysiak, Matthias Heuer, Anis Jouini, Kamel Ounadjela
  • Patent number: 8968467
    Abstract: Techniques for controlling resistivity in the formation of a silicon ingot from compensated feedstock silicon material prepares a compensated, upgraded metallurgical silicon feedstock for being melted to form a silicon melt. The compensated, upgraded metallurgical silicon feedstock provides semiconductor predominantly of a single type (p-type or n-type) for which the process assesses the concentrations of boron and phosphorus and adds a predetermined amount of boron, phosphorus, aluminum and/or gallium. The process further melts the silicon feedstock with the boron, phosphorus, aluminum and/or gallium to form a molten silicon solution from which to perform directional solidification and maintains the homogeneity of the resistivity of the silicon throughout the ingot. A balanced amount of phosphorus can be optionally added to the aluminum and/or gallium. Resistivity may also be measured repeatedly during ingot formation, and additional dopant may be added in response, either repeatedly or continuously.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 3, 2015
    Assignee: Silicor Materials Inc.
    Inventors: Fritz Kirscht, Marcin Walerysiak, Matthias Heuer, Anis Jouini, Kamel Ounadjela
  • Patent number: 8547121
    Abstract: A quality control process for determining the concentrations of boron and phosphorous in a UMG-Si feedstock batch is provided. A silicon test ingot is formed by the directional solidification of molten UMG-Si from a UMG-Si feedstock batch. The resistivity of the silicon test ingot is measured from top to bottom. Then, the resistivity profile of the silicon test ingot is mapped. From the resistivity profile of the silicon test ingot, the concentrations of boron and phosphorous of the UMG-Si silicon feedstock batch are calculated. Additionally, multiple test ingots may be grown simultaneously, with each test ingot corresponding to a UMG-Si feedstock batch, in a multi-crucible crystal grower.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Silicor Materials Inc.
    Inventors: Kamel Ounadjela, Marcin Walerysiak, Anis Jouini, Matthias Heuer, Omar Sidelkheir, Alain Blosse, Fritz Kirscht
  • Publication number: 20100327890
    Abstract: A quality control process for determining the concentrations of boron and phosphorous in a UMG-Si feedstock batch is provided. A silicon test ingot is formed by the directional solidification of molten UMG-Si from a UMG-Si feedstock batch. The resistivity of the silicon test ingot is measured from top to bottom. Then, the resistivity profile of the silicon test ingot is mapped. From the resistivity profile of the silicon test ingot, the concentrations of boron and phosphorous of the UMG-Si silicon feedstock batch are calculated. Additionally, multiple test ingots may be grown simultaneously, with each test ingot corresponding to a UMG-Si feedstock batch, in a multi-crucible crystal grower.
    Type: Application
    Filed: April 29, 2010
    Publication date: December 30, 2010
    Applicant: CaliSolar, Inc.
    Inventors: Kamel Ounadjela, Marcin Walerysiak, Anis Jouini, Matthias Heuer, Omar Sidelkheir, Alain Blosse, Fritz Kirscht
  • Publication number: 20100310445
    Abstract: A process control method for UMG-Si purification by performing a directional solidification of molten UMG-Si to form a silicon ingot is described. The ingot is divided into bricks and the resistivity profile of each silicon brick is mapped. A crop line for removing the impurities concentrated and captured in the ingot during the directional solidification is calculated based on the resistivity map. The concentrated impurities are then removed by cropping each brick along that brick's calculated crop line.
    Type: Application
    Filed: February 10, 2010
    Publication date: December 9, 2010
    Applicant: CaliSolar, Inc.
    Inventors: Kamel Ounadjela, Marcin Walerysiak, Anis Jouini, Matthias Heuer, Omar Sidelkheir, Alain Blosse, Fritz Kirscht
  • Publication number: 20100258768
    Abstract: Techniques for controlling resistivity in the formation of a silicon ingot from compensated feedstock silicon material prepares a compensated, upgraded metallurgical silicon feedstock for being melted to form a silicon melt. The compensated, upgraded metallurgical silicon feedstock provides semiconductor predominantly of a single type (p-type or n-type) for which the process assesses the concentrations of boron and phosphorus and adds a predetermined amount of boron, phosphorus, aluminum and/or gallium. The process further melts the silicon feedstock with the boron, phosphorus, aluminum and/or gallium to form a molten silicon solution from which to perform directional solidification and maintains the homogeneity of the resistivity of the silicon throughout the ingot. A balanced amount of phosphorus can be optionally added to the aluminum and/or gallium. Resistivity may also be measured repeatedly during ingot formation, and additional dopant may be added in response, either repeatedly or continuously.
    Type: Application
    Filed: November 13, 2009
    Publication date: October 14, 2010
    Applicant: CALISOLAR, INC.
    Inventors: Fritz Kirscht, Marcin Walerysiak, Matthias Heuer, Anis Jouini, Kamel Ounadjela