Patents by Inventor Marco Soldano

Marco Soldano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080094040
    Abstract: A one cycle control power factor correction control circuit in accordance with an embodiment of the present application includes a first input operable to receive a signal indicative of an input voltage to the voltage converter, a second input operable to receive a signal indicative of an inductor current in an inductor of the voltage converter and an amplifier operable to amplify the signal indicative of the inductor current, wherein a gain of the amplifier is based on the signal indicative of the input voltage.
    Type: Application
    Filed: October 22, 2007
    Publication date: April 24, 2008
    Inventors: Marco Soldano, Ramanan Natarajan
  • Patent number: 7355868
    Abstract: A circuit and method for improving current sensing in a bridgeless PFC boost converter. Such a converter comprises a current transformer having first and second primaries; a boost inductor having a first end connected to a first AC input terminal and a second end connected to a first junction defined between the anode of a first diode and a first end of the first primary, the second end of the first primary being connected to a first terminal of the first switch; a second terminal of the first switch being connected to a common line; a parallel circuit of a capacitance and a load connected between the cathode of the first diode and the common line; a series circuit of a second diode, the second primary and a second switch connected between the cathode of the first diode and the common line; and a second AC input terminal connected to a second junction defined between the second primary and the second switch. A second boost inductor may be connected between the second AC input terminal and the second junction.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: April 8, 2008
    Assignee: International Rectifier Corporation
    Inventor: Marco Soldano
  • Patent number: 7355368
    Abstract: A boost converter in accordance with an embodiment of the present application includes an input rectifying bridge adapted to rectify an input AC voltage, a first inductor connected to the input rectifying bridge, a output capacitor coupled to first inductor for connection to a DC bus, a first bidirectional semiconductor switch coupled between the output capacitor and the first inductor, a second inductor positioned adjacent to the first inductor with a first end connected to a common ground and a second bidirectional semiconductor switch positioned between the second inductor and the output capacitor. An inrush control device may be provided to control the first and second bidirectional semiconductor switches to prevent current inrush.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: April 8, 2008
    Assignee: International Rectifier Corporation
    Inventors: Maurizio Salato, Marco Soldano
  • Patent number: 7276883
    Abstract: A boost converter in which the conventional boost diode is replaced by a bidirectional normally conducting semiconductor switch. The circuit may be implemented so the bidirectional switch is self-driven by connecting a low voltage Schottky diode between a first gate-source terminal pair. An inrush current protection function may be provided by utilizing a second gate-source terminal pair to turn the switch on and off independent of the self-driven operation in response to predetermined excessive load current conditions. The inrush current protection function is implemented by use of a second Schottky diode connected between the second gate and source terminals, and an RC circuit connecting the second gate terminal to the return rail for the converter power output transistor with an externally controlled switch connected to the RC circuit to control the bias according to the load current.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: October 2, 2007
    Assignee: International Rectifier Corporation
    Inventor: Marco Soldano
  • Patent number: 7215560
    Abstract: A circuit and method for improving EMI noise performance in a bridgeless PFC boost converter. Such a converter comprises a boost inductor having a first end connected to a first AC input terminal and a second end connected to a first junction defined between the anode of a first diode and a first terminal of a first switch; a second terminal of the first switch connected to a common line; a parallel circuit of a capacitance and a load connected between the cathode of the first diode and the common line; a series circuit of a second diode and a second switch connected between the cathode of the first diode and the common line; and a second AC input terminal connected to a second junction defined between the anode of the second diode and the second switch. High-frequency EMI noise is bypassed by placing a first filter capacitor between the first AC terminal and the common line.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: May 8, 2007
    Assignee: International Rectifier Corporation
    Inventors: Marco Soldano, Bin Lu
  • Patent number: 7180762
    Abstract: A high voltage rectifier device exhibiting low forward resistance and fast switching time formed of a high voltage structure connected in a cascode configuration with a low voltage structure. The high voltage structure is a bidirectional normally on semiconductor switch have two pairs of gate and source terminals which shuts off if either of the gate terminals is reverse biased. The low voltage structure is a diode, preferably a Schottky or barrier diode. The device is advantageously formed as an integrated circuit. With one of the terminal pairs of the switch clamped to zero volts, the device behaves as a diode, or the second terminal pair can be employed to provide the functions of a three terminal controlled rectifier. Among other possible applications are integrated circuits using four of the devices as a bridge rectifier, and as an anti-parallel diode for connection with an IGBT.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: February 20, 2007
    Assignee: International Rectifier Corporation
    Inventor: Marco Soldano
  • Patent number: 7164591
    Abstract: The bridgeless boost topology reduces the power dissipation, cost, and size of prior PFC systems by eliminating the intrinsic loss of the input rectifier bridge. Sensing of the input line voltage by the controller is unnecessary. The use of One Cycle Control (also known as Single Cycle Control) allows the Power Factor Correction function to be performed without complex rectification networks to obtain the AC line voltage reference. The use of bi-directional switches makes it possible to control inrush current (the startup over-current due to the charging of the output bulk capacitor), which allows elimination of over-current limiting devices and reduction of the diode surge capability requirements. Moving the boost inductor to the system input adds an additional filtering function, reducing the cost of input EMI filtering.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: January 16, 2007
    Assignee: International Rectifier Corporation
    Inventor: Marco Soldano
  • Patent number: 7164589
    Abstract: A circuit is provided for converting power from an AC power source to DC power. The circuit including bi-directional switches capable of conducting and blocking a current flow in both directions. One or more control switches are coupled to a bi-directional switch to enable and disable the current flow through the bi-directional switch, the control switches are controlled by a signal voltage to turn a bi-directional switch ON by discharging a threshold voltage on one of the bi-directional switch gates and turning a bi-directional switch OFF when the threshold voltage is not discharged by the control switches. Additionally, the circuit includes a transformer having one or more primary windings and a secondary winding, each primary winding being coupled to one of the bi-directional switch sources. The current flow through the primary winding is disabled when the current flow through the corresponding bi-directional switch source is disabled.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: January 16, 2007
    Assignee: International Rectifier Corporation
    Inventors: Marco Soldano, Maurizio Salato
  • Publication number: 20070008747
    Abstract: A circuit is provided for converting power from an AC power source to DC power. The circuit including bi-directional switches capable of conducting and blocking a current flow in both directions. One or more control switches are coupled to a bi-directional switch to enable and disable the current flow through the bi-directional switch, the control switches are controlled by a signal voltage to turn a bi-directional switch ON by discharging a threshold voltage on one of the bi-directional switch gates and turning a bi-directional switch OFF when the threshold voltage is not discharged by the control switches. Additionally, the circuit includes a transformer having one or more primary windings and a secondary winding, each primary winding being coupled to one of the bi-directional switch sources. The current flow through the primary winding is disabled when the current flow through the corresponding bi-directional switch source is disabled.
    Type: Application
    Filed: June 26, 2006
    Publication date: January 11, 2007
    Inventors: Marco Soldano, Maurizio Salato
  • Publication number: 20060290407
    Abstract: Disclosed is a method of controlling a High Electron Mobility Transistor (HEMT) through a cascode circuit, the cascode circuit including first and second switches, a capacitor connected to a source of the first switch, a source of the HEMT being connected to the drain of the first switch, and a controller for controlling the first and second switches. The method is achieved by defining state A, where the first switch is controlled to be OFF resulting in the HEMT being OFF and the second switch is controlled to be ON allowing the capacitor to be charged and stabilizing the drain voltage of the HEMT at around the HEMT gate threshold voltage. The method further defines state B, where the first switch is controlled to be ON resulting in the HEMT being ON and the second switch is controlled to be OFF almost all the time, thereby preserving the charge stored in the capacitor.
    Type: Application
    Filed: May 23, 2006
    Publication date: December 28, 2006
    Inventors: Maurizio Salato, Marco Soldano
  • Publication number: 20060279351
    Abstract: A driving circuit for a half bridge utilizing bidirectional semiconductor switches in accordance with an embodiment of the present application includes a high side driver operable to control a high side bidirectional semiconductor switch, wherein the high side driver provides a negative bias voltage to the bidirectional semiconductor switch to turn the high side bidirectional semiconductor switch OFF. A low side driver may be operable to control a low side bidirectional semiconductor switch. An external voltage source with a negative terminal of the voltage source connected to the high side driver may be provided. A high side driving switch may be positioned between the negative terminal of the voltage source and the high side driver and operable to connect the high side driver to the negative terminal of the voltage source when the low side driver turns the low side bidirectional semiconductor switch ON.
    Type: Application
    Filed: April 11, 2006
    Publication date: December 14, 2006
    Inventors: Maurizio Salato, Marco Soldano
  • Publication number: 20060232253
    Abstract: A boost converter in accordance with an embodiment of the present application includes an input rectifying bridge adapted to rectify an input AC voltage, a first inductor connected to the input rectifying bridge, a output capacitor coupled to first inductor for connection to a DC bus, a first bidirectional semiconductor switch coupled between the output capacitor and the first inductor, a second inductor positioned adjacent to the first inductor with a first end connected to a common ground and a second bidirectional semiconductor switch positioned between the second inductor and the output capacitor. An inrush control device may be provided to control the first and second bidirectional semiconductor switches to prevent current inrush.
    Type: Application
    Filed: June 16, 2006
    Publication date: October 19, 2006
    Inventors: Maurizio Salato, Marco Soldano
  • Publication number: 20060220628
    Abstract: A circuit and method for improving current sensing in a bridgeless PFC boost converter. Such a converter comprises a current transformer having first and second primaries; a boost inductor having a first end connected to a first AC input terminal and a second end connected to a first junction defined between the anode of a first diode and a first end of the first primary, the second end of the first primary being connected to a first terminal of the first switch; a second terminal of the first switch being connected to a common line; a parallel circuit of a capacitance and a load connected between the cathode of the first diode and the common line; a series circuit of a second diode, the second primary and a second switch connected between the cathode of the first diode and the common line; and a second AC input terminal connected to a second junction defined between the second primary and the second switch. A second boost inductor may be connected between the second AC input terminal and the second junction.
    Type: Application
    Filed: March 28, 2006
    Publication date: October 5, 2006
    Inventor: Marco Soldano
  • Publication number: 20060208711
    Abstract: A circuit and method for improving EMI noise performance in a bridgeless PFC boost converter. Such a converter comprises a boost inductor having a first end connected to a first AC input terminal and a second end connected to a first junction defined between the anode of a first diode and a first terminal of a first switch; a second terminal of the first switch connected to a common line; a parallel circuit of a capacitance and a load connected between the cathode of the first diode and the common line; a series circuit of a second diode and a second switch connected between the cathode of the first diode and the common line; and a second AC input terminal connected to a second junction defined between the anode of the second diode and the second switch. High-frequency EMI noise is bypassed by placing a first filter capacitor between the first AC terminal and the common line.
    Type: Application
    Filed: December 13, 2005
    Publication date: September 21, 2006
    Inventors: Marco Soldano, Bing Lu
  • Patent number: 7095099
    Abstract: A low profile semiconductor device package includes a lead frame with terminal leads and two die pads for receiving at least two semiconductor die that are interconnected to form a circuit. A further low profile semiconductor device package includes a lead frame with two die pads for receiving at least two semiconductor die that are interconnected to form a circuit and also has a reduced height through removal of a mounting tab. An example of such device packages is a package that includes first and second MOSFET die, each connected to a respective die pad. The source of one MOSFET is connected to the drain of the other MOSFET, thereby forming a low profile device package that provides a half-bridge circuit. Other example device packages include different arrangements of two interconnected MOSFET die, two interconnected IGBTs, or a combination of a MOSFET die and a diode.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 22, 2006
    Assignee: International Rectifier Corporation
    Inventors: Stephen Oliver, Marco Soldano, Mark Pavier, Glyn Connah, Ajit Dubhashi
  • Publication number: 20060062032
    Abstract: A high voltage rectifier device exhibiting low forward resistance and fast switching time formed of a high voltage structure connected in a cascode configuration with a low voltage structure. The high voltage structure is a bidirectional normally on semiconductor switch have two pairs of gate and source terminals which shuts off if either of the gate terminals is reverse biased. The low voltage structure is a diode, preferably a Schottky or barrier diode. The device is advantageously formed as an integrated circuit. With one of the terminal pairs of the switch clamped to zero volts, the device behaves as a diode, or the second terminal pair can be employed to provide the functions of a three terminal controlled rectifier. Among other possible applications are integrated circuits using four of the devices as a bridge rectifier, and as an anti-parallel diode for connection with an IGBT.
    Type: Application
    Filed: August 19, 2005
    Publication date: March 23, 2006
    Inventor: Marco Soldano
  • Publication number: 20060039172
    Abstract: A circuit for increasing the bulk capacitor hold-up time in a converter circuit wherein the converter circuit comprises an input circuit for providing a DC bus voltage and a DC bulk capacitor connected across the output of the input circuit, and further comprising an output DC to DC converter circuit having an input coupled to the DC bus and providing an output voltage, the circuit comprising a boost converter circuit having an input coupled across the DC bulk capacitor and having an output coupled to the input of the output DC to DC converter stage.
    Type: Application
    Filed: August 23, 2005
    Publication date: February 23, 2006
    Inventor: Marco Soldano
  • Publication number: 20060033480
    Abstract: A boost converter in which the conventional boost diode is replaced by a bidirectional normally conducting semiconductor switch. The circuit may be implemented so the bidirectional switch is self-driven by connecting a low voltage Schottky diode between a first gate-source terminal pair. An inrush current protection function may be provided by utilizing a second gate-source terminal pair to turn the switch on and off independent of the self-driven operation in response to predetermined excessive load current conditions. The inrush current protection function is implemented by use of a second Schottky diode connected between the second gate and source terminals, and an RC circuit connecting the second gate terminal to the return rail for the converter power output transistor with an externally controlled switch connected to the RC circuit to control the bias according to the load current.
    Type: Application
    Filed: August 11, 2005
    Publication date: February 16, 2006
    Inventor: Marco Soldano
  • Publication number: 20050151236
    Abstract: A low profile semiconductor device package includes a lead frame with terminal leads and two die pads for receiving at least two semiconductor die that are interconnected to form a circuit. A further low profile semiconductor device package includes a lead frame with two die pads for receiving at least two semiconductor die that are interconnected to form a circuit and also has a reduced height through removal of a mounting tab. An example of such device packages is a package that includes first and second MOSFET die, each connected to a respective die pad. The source of one MOSFET is connected to the drain of the other MOSFET, thereby forming a low profile device package that provides a half-bridge circuit. Other example device packages include different arrangements of two interconnected MOSFET die, two interconnected IGBTs, or a combination of a MOSFET die and a diode.
    Type: Application
    Filed: November 12, 2004
    Publication date: July 14, 2005
    Inventors: Stephen Oliver, Marco Soldano, Mark Pavier, Glyn Connah, Ajit Dubhashi
  • Publication number: 20050122753
    Abstract: An integrated synchronous rectifier package comprising a controlled switching device having two main current carrying terminals and a control terminal, a control circuit for sensing the direction of current through the controlled switching device main current carrying terminals and for generating a control signal provided to the control terminal to turn on the controlled switching device when current flows in a first direction through the controlled switching device and to turn off the controlled switching device when current flows in a second opposite direction through the controlled switching device, the control circuit and controlled switching device being contained within a single package having no more than four external electrical connections.
    Type: Application
    Filed: November 1, 2004
    Publication date: June 9, 2005
    Inventor: Marco Soldano