Patents by Inventor Marcus Allen Smith

Marcus Allen Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9680374
    Abstract: A high frequency inductive emf circuit charges storage capacitors, one at a time, from a DC source to a voltage that is higher than the DC output voltage. After each storage capacitor is charged, it is disconnected from the charging circuit and then connected to an output device/regulator that uses the energy in each storage capacitor to provide the desired DC output voltage to a load. While one storage capacitor is being charged, a previously charged storage capacitor is being discharged through an output device/regulator. After being discharged, each storage capacitor is disconnected from its output device/regulator and reconnected to the charging circuit and is charged again. While being charged, the storage capacitors are in a parallel circuit to the inductor in the charging circuit. The inductor in the charging circuit and the DC source are never in a current loop with the load.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: June 13, 2017
    Inventor: Marcus Allen Smith
  • Publication number: 20150349641
    Abstract: A high frequency inductive emf circuit charges storage capacitors, one at a time, from a DC source to a voltage that is higher than the DC output voltage. After each storage capacitor is charged, it is disconnected from the charging circuit and then connected to an output device/regulator that uses the energy in each storage capacitor to provide the desired DC output voltage to a load. While one storage capacitor is being charged, a previously charged storage capacitor is being discharged through an output device/regulator. After being discharged, each storage capacitor is disconnected from its output device/regulator and reconnected to the charging circuit and is charged again. While being charged, the storage capacitors are in a parallel circuit to the inductor in the charging circuit. The inductor in the charging circuit and the DC source are never in a current loop with the load.
    Type: Application
    Filed: May 26, 2015
    Publication date: December 3, 2015
    Inventor: Marcus Allen SMITH
  • Patent number: 7230358
    Abstract: Practically ideal electrical resonance is employed to soley provide armature power, and stator power if desired, to run DC motors. A practically ideal parallel resonant tank circuit (PIPRC) is used wherein the quotient of the “tank current” divided by the “line current” (called the “quality” or “Q” of the tank) is (1) greater than one, (2) large enough to allow the percent efficiency of the electric motor to be equal to or greater than 95%, and (3) removes enough back emf or enough of the influence thereof so that criteria (1) and (2) can be realized throughout the entire operating range of the motor. Only one PIPRC is needed for a DC motor. Recontrolling and/or redesigning is done for two reasons.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: June 12, 2007
    Inventor: Marcus Allen Smith
  • Publication number: 20040190881
    Abstract: Practically ideal electrical resonance is employed to soley provide armature power, and stator power if desired, to run DC motors. A practically ideal parallel resonant tank circuit (PIPRC) is used wherein the quotient of the “tank current” divided by the “line current” (called the “quality” or “Q” of the tank) is (1) greater than one, (2) large enough to allow the percent efficiency of the electric motor to be equal to or greater than 95%, and (3) removes enough back emf or enough of the influence thereof so that criteria (1) and (2) can be realized throughout the entire operating range of the motor. Only one PIPRC is needed for a DC motor. Recontrolling and/or redesigning is done for two reasons.
    Type: Application
    Filed: April 6, 2004
    Publication date: September 30, 2004
    Inventor: Marcus Allen Smith
  • Patent number: 6721496
    Abstract: Practically ideal electrical resonance is employed to soley provide armature power, and stator power if desired, to run DC motors. A practically ideal parallel resonant tank circuit (PIPRC) is used wherein the quotient of the “tank current” divided by the “line current” (called the “quality” or “Q” of the tank) is (1) greater than one, (2) large enough to allow the percent efficiency of the electric motor to be equal to or greater than 95%, and (3) removes enough back emf or enough of the influence thereof so that criteria (1) and (2) can be realized throughout the entire operating range of the motor. Only one PIPRC is needed for a DC motor. Recontrolling and/or redesigning is done for two reasons.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: April 13, 2004
    Inventor: Marcus Allen Smith
  • Publication number: 20030077077
    Abstract: Practically ideal electrical resonance is employed to soley provide armature power, and stator power if desired, to run DC motors. A practically ideal parallel resonant tank circuit (PIPRC) is used wherein the quotient of the “tank current” divided by the “line current” (called the “quality” or “Q” of the tank) is (1) greater than one, (2) large enough to allow the percent efficiency of the electric motor to be equal to or greater than 95%, and (3) removes enough back emf or enough of the influence thereof so that criteria (1) and (2) can be realized throughout the entire operating range of the motor. Only one PIPRC is needed for a DC motor. Recontrolling and/or redesigning is done for two reasons.
    Type: Application
    Filed: October 24, 2001
    Publication date: April 24, 2003
    Inventor: Marcus Allen Smith