Patents by Inventor Marcus R. Skeem

Marcus R. Skeem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9637979
    Abstract: Rotary drag bits comprise a body comprising a face at a leading end of the body. An abrasive-impregnated cutting structure is located at the face of the body. The abrasive-impregnated cutting structure comprises abrasive particles dispersed within a matrix material. The abrasive-impregnated cutting structure exhibits an anisotropic wear resistance. The wear resistance varies at least substantially continuously within the abrasive-impregnated cutting structure.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: May 2, 2017
    Assignee: Baker Hughes Incorporated
    Inventors: Van J. Brackin, Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem, Matthew R. Isbell
  • Patent number: 9567808
    Abstract: Cutting elements for earth-boring tools may generate a shear lip at a wear scar thereon during cutting. A diamond table may exhibit a relatively high wear resistance, and an edge of the diamond table may be chamfered, the combination of which may result in the formation of a shear lip. Cutting elements may comprise multi-layer diamond tables that result in the formation of a shear lip during cutting. Earth-boring tools include such cutting elements. Methods of forming cutting elements may include selectively designing and configuring the cutting elements to form a shear lip. Methods of cutting a formation using an earth-boring tool include cutting the formation with a cutting element on the tool, and generating a shear lip at a wear scar on the cutting element. The cutting element may be configured such that the shear lip comprises diamond material of the cutting element.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: February 14, 2017
    Assignees: Baker Hughes Incorporated, Element Six Ltd
    Inventors: Danny E. Scott, Marcus R. Skeem, Jeffrey B. Lund, John H. Liversage, Moosa Mahomed Adia
  • Publication number: 20140332274
    Abstract: Cutting elements for earth-boring tools may generate a shear lip at a wear scar thereon during cutting. A diamond table may exhibit a relatively high wear resistance, and an edge of the diamond table may be chamfered, the combination of which may result in the formation of a shear lip. Cutting elements may comprise multi-layer diamond tables that result in the formation of a shear lip during cutting. Earth-boring tools include such cutting elements. Methods of forming cutting elements may include selectively designing and configuring the cutting elements to form a shear lip. Methods of cutting a formation using an earth-boring tool include cutting the formation with a cutting element on the tool, and generating a shear lip at a wear scar on the cutting element. The cutting element may be configured such that the shear lip comprises diamond material of the cutting element.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Danny E. Scott, Marcus R. Skeem, Jeffrey B. Lund, John H. Liversage, Moosa Mahomed Adia
  • Patent number: 8800692
    Abstract: Cutting elements for earth-boring tools may generate a shear lip at a wear scar thereon during cutting. A diamond table may exhibit a relatively high wear resistance, and an edge of the diamond table may be chamfered, the combination of which may result in the formation of a shear lip. Cutting elements may comprise multi-layer diamond tables that result in the formation of a shear lip during cutting. Earth-boring tools include such cutting elements. Methods of forming cutting elements may include selectively designing and configuring the cutting elements to form a shear lip. Methods of cutting a formation using an earth-boring tool include cutting the formation with a cutting element on the tool, and generating a shear lip at a wear scar on the cutting element. The cutting element may be configured such that the shear lip comprises diamond material of the cutting element.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: August 12, 2014
    Assignees: Baker Hughes Incorporated, Element Six Ltd
    Inventors: Danny E. Scott, Marcus R. Skeem, Jeffrey B. Lund, John H. Liversage, Moosa Mahomed Adia
  • Patent number: 8795034
    Abstract: A dressing blade for finishing and reconditioning new and used abrasive grinding and cutting tools has a slab-shaped shank with an extension protruding longitudinally from the shank. Superabrasive grains are disposed on the surface of the extension and held in place by a brazed metal composition. This composition is formed by brazing a powdered mixture of brazing metal components and active metal components. Specific extension configurations are provided which allow aligning the superabrasive grains in single layer arrangement for precise dressing and simple fabrication of the tool. The novel dressing tool exhibits excellent wear characteristics.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: August 5, 2014
    Assignee: Saint-Gobain Abrasives, Inc.
    Inventors: Richard M. Andrews, Sergej-Tomislav Buljan, Earl G. Geary, Jr., Robert L. Owen, Marcus R. Skeem
  • Publication number: 20140151132
    Abstract: Rotary drag bits comprise a body comprising a face at a leading end of the body. An abrasive-impregnated cutting structure is located at the face of the body. The abrasive-impregnated cutting structure comprises abrasive particles dispersed within a matrix material. The abrasive-impregnated cutting structure exhibits an anisotropic wear resistance. The wear resistance varies at least substantially continuously within the abrasive-impregnated cutting structure.
    Type: Application
    Filed: February 5, 2014
    Publication date: June 5, 2014
    Applicant: Baker Hughes Incorporated
    Inventors: Van J. Brackin, Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem, Matthew R. Isbell
  • Patent number: 8662207
    Abstract: Rotary drag bits comprise a body comprising a face at a leading end of the body. An abrasive-impregnated cutting structure is located at the face of the bit body. The abrasive-impregnated cutting structure comprises abrasive particles dispersed within a matrix material. The abrasive-impregnated cutting structure exhibits an anisotropic wear resistance. The wear resistance varies at least substantially continuously within the abrasive-impregnated cutting structure.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 4, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Van J. Brackin, Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem, Matthew R. Isbell
  • Patent number: 8333814
    Abstract: An abrasive-impregnated cutting structure for use in drilling a subterranean formation is disclosed. The abrasive-impregnated cutting structure may comprise a plurality of abrasive particles dispersed within a substantially continuous matrix, wherein the abrasive-impregnated cutting structure exhibits an anisotropic wear resistance. One or more of the amount, average size, composition, properties, shape, quality, strength, and concentration of the abrasive particles may vary within the abrasive-impregnated cutting structure. Anisotropic wear resistance may relate to a selected direction, such as, for example, one or more of an expected direction of engagement of the abrasive-impregnated cutting structure with the subterranean formation and an anticipated wear direction. Anisotropic wear resistance of an abrasive-impregnated cutting structure may be configured for forming or retaining a formation-engaging leading edge thereof.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: December 18, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Van J. Brackin, Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem, Matthew R. Isbell
  • Publication number: 20110088950
    Abstract: Cutting elements for earth-boring tools may generate a shear lip at a wear scar thereon during cutting. A diamond table may exhibit a relatively high wear resistance, and an edge of the diamond table may be chamfered, the combination of which may result in the formation of a shear lip. Cutting elements may comprise multi-layer diamond tables that result in the formation of a shear lip during cutting. Earth-boring tools include such cutting elements. Methods of forming cutting elements may include selectively designing and configuring the cutting elements to form a shear lip. Methods of cutting a formation using an earth-boring tool include cutting the formation with a cutting element on the tool, and generating a shear lip at a wear scar on the cutting element. The cutting element may be configured such that the shear lip comprises diamond material of the cutting element.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 21, 2011
    Applicants: BAKER HUGHES INCORPORATED, ELEMENT SIX (PRODUCTION) (PTY) LTD.
    Inventors: Danny E. Scott, Marcus R. Skeem, Jeffrey B. Lund, John H. Liversage, Moosa Mahomed Adia
  • Patent number: 7810588
    Abstract: A method of constructing an earth-boring, diamond-impregnated drill bit has a first step of coating diamond grit with tungsten to create tungsten-coated diamond particles. These coated particles are then encapsulated in a layer of carbide powder held by an organic green binder material. The encapsulated granules are then mixed along with a matrix material and placed in a mold. The matrix material includes a matrix binder and abrasive particles. The mixture is heated in the mold at atmospheric pressure to cause the matrix binder to melt and infiltrate the encapsulated granules and abrasive particles.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: October 12, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Eric E. McClain, Dan E. Scott, Wesley Dean Fuller, Robert M. Welch, Jimmy W. Eason, Marcus R. Skeem, Van J. Brackin
  • Patent number: 7730976
    Abstract: A drill bit is provided that employs a plurality of discrete, post-like, abrasive, particulate-impregnated cutting structures extending upwardly from the bit face. The cutting structures may be disposed on abrasive, particulate-impregnated blades that also define a plurality of fluid passages on the bit face. One or more of the cutting structures may include outermost ends that exhibit a cross-sectional geometry that is elongated in a direction along a defined axis. The cutting structures may be oriented such that the defined axis is neither coplanar with, nor parallel to, an intended rotational path of the at least one discrete cutting structure during operation of the bit. In one embodiment, the cutting structure is oriented such that the defined axis is at an acute angle relative to a tangent of the intended rotational path for the associated cutting structure. Other or different features may include, for example, additional, differently configured cutting elements.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 8, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Eric E. McClain, Marcus R. Skeem
  • Publication number: 20090217597
    Abstract: An abrasive-impregnated cutting structure for use in drilling a subterranean formation is disclosed. The abrasive-impregnated cutting structure may comprise a plurality of abrasive particles dispersed within a substantially continuous matrix, wherein the abrasive-impregnated cutting structure exhibits an anisotropic wear resistance. One or more of the amount, average size, composition, properties, shape, quality, strength, and concentration of the abrasive particles may vary within the abrasive-impregnated cutting structure. Anisotropic wear resistance may relate to a selected direction, such as, for example, one or more of an expected direction of engagement of the abrasive-impregnated cutting structure with the subterranean formation and an anticipated wear direction. Anisotropic wear resistance of an abrasive-impregnated cutting structure may be configured for forming or retaining a formation-engaging leading edge thereof.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 3, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Van J. Brackin, Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem, Matthew R. Isbell
  • Publication number: 20090107732
    Abstract: A drill bit is provided that employs a plurality of discrete, post-like, abrasive, particulate-impregnated cutting structures extending upwardly from the bit face. The cutting structures may be disposed on abrasive, particulate-impregnated blades that also define a plurality of fluid passages on the bit face. One or more of the cutting structures may include outermost ends that exhibit a cross-sectional geometry that is elongated in a direction along a defined axis. The cutting structures may be oriented such that the defined axis is neither coplanar with, nor parallel to, an intended rotational path of the at least one discrete cutting structure during operation of the bit. In one embodiment, the cutting structure is oriented such that the defined axis is at an acute angle relative to a tangent of the intended rotational path for the associated cutting structure. Other or different features may include, for example, additional, differently configured cutting elements.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Inventors: Eric E. McClain, Marcus R. Skeem
  • Patent number: 7497280
    Abstract: An abrasive-impregnated cutting structure for use in drilling a subterranean formation is disclosed. The abrasive-impregnated cutting structure may comprise a plurality of abrasive particles dispersed within a substantially continuous matrix, wherein the abrasive-impregnated cutting structure exhibits an anisotropic wear resistance. One or more of the amount, average size, composition, properties, shape, quality, strength, and concentration of the abrasive particles may vary within the abrasive-impregnated cutting structure. Anisotropic wear resistance may relate to a selected direction, such as, for example, one or more of an expected direction of engagement of the abrasive-impregnated cutting structure with the subterranean formation and an anticipated wear direction. Anisotropic wear resistance of an abrasive-impregnated cutting structure may be configured for forming or retaining a formation-engaging leading edge thereof.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: March 3, 2009
    Assignee: Baker Hughes Incorporated
    Inventors: Van J. Brackin, Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem, Matthew R. Isbell
  • Publication number: 20080202821
    Abstract: A method of constructing an earth-boring, diamond-impregnated drill bit has a first step of coating diamond grit with tungsten to create tungsten-coated diamond particles. These coated particles are then encapsulated in a layer of carbide powder held by an organic green binder material. The encapsulated granules are then mixed along with a matrix material and placed in a mold. The matrix material includes a matrix binder and abrasive particles. The mixture is heated in the mold at atmospheric pressure to cause the matrix binder to melt and infiltrate the encapsulated granules and abrasive particles.
    Type: Application
    Filed: February 23, 2007
    Publication date: August 28, 2008
    Inventors: Eric E. McClain, Dan E. Scott, Wesley Dean Fuller, Robert M. Welch, Jimmy W. Eason, Marcus R. Skeem, Van J. Brackin
  • Patent number: 7243745
    Abstract: A cutting element for a rotary drill bit that has a superabrasive member joined to a substrate at a three-dimensional interface is disclosed. The interface of the cutting element preferably incorporates a first ring pattern comprising a plurality of circumferentially arranged raised sections which are separated by a plurality of radially extending grooves. Also, the interface configuration may include at least a second ring pattern comprising a plurality of circumferentially arranged raised sections which are separated by a plurality of radially extending grooves. Radially adjacent ring patterns may substantially circumferentially overlap with one another. An interface of a cutting element including at least one ring pattern having an odd number of sections is also disclosed. Further, rotary drill bits including at least one such cutting element are disclosed.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: July 17, 2007
    Assignee: Baker Hughes Incorporated
    Inventors: Marcus R. Skeem, Danny E. Scott, Jeffrey B. Lund
  • Patent number: 7188692
    Abstract: A superabrasive cutting element including a diamond or other superabrasive material table having a peripheral cutting edge defined by at least two adjacent chamfers having an arcuate surface substantially tangent to each of the at least two chamfers interposed therebetween. Methods of producing such superabrasive cutting elements and drill bits equipped with such superabrasive cutting elements are also disclosed.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: March 13, 2007
    Assignee: Baker Hughes Incorporated
    Inventors: Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem
  • Patent number: 7048081
    Abstract: A superabrasive cutting element for use with a drill bit for drilling subterranean formations and having a superabrasive table, or cutting face, in which a conglomerate of superabrasive particles is dispersed and bonded, or sintered, and in which at least one exposed cutting region of the superabrasive table develops a rough, asperital surface for improving the cutting efficiency of the drill bit, particularly in but not limited to relatively hard, relatively nonabrasive formations. The superabrasive table may include superabrasive particles of substantially differing size, or quality or a combination of differing size and quality. A rotary drill bit including cutting elements embodying the present invention is also disclosed.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: May 23, 2006
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, Marcus R. Skeem, Craig H. Cooley
  • Patent number: 6935444
    Abstract: A superabrasive cutting element including a diamond or other superabrasive material table having a peripheral cutting edge defined by at least two adjacent chamfers having an arcuate surface substantially tangent to each of the at least two chamfers interposed therebetween. Methods of producing such superabrasive cutting elements and drill bits equipped with such superabrasive cutting elements are also disclosed.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: August 30, 2005
    Assignee: Baker Hughes Incorporated
    Inventors: Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem
  • Patent number: 6935940
    Abstract: This invention relates to an abrasive cutting tool comprising: i) a substrate surface having a plurality of teeth extending therefrom, and ii) a single layer of abrasive grains chemically bonded to at least a portion of each tooth to define a plurality of cutting levels parallel to the substrate surface, the cutting levels comprising a first uppermost cutting level and a second uppermost cutting level, the grains having a predetermined concentration, size and toughness, whereby the abrasive cutting tool has a cutting surface with a negative angle of inclination with respect to an intended direction of cutting.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 30, 2005
    Assignee: Saint-Gobain Abrasives Technology Company
    Inventors: Marcus R. Skeem, Sergej-Tomislav Buljan, Jean Kramp