Patents by Inventor Maria Grazia Verardi

Maria Grazia Verardi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11162715
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel encompassing a container which is either vertically positioned in an upright or an upside-down position. The liquid and/or gas CO2 coolant is then released into a capillary system or flow metering system to allow the CO2 to enter a second body to where the CO2 coolant properties may be leveraged. The second body includes, by way of example, a plate, a cushion, a spot treatment pad for a person's muscle, or a cooler. The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which sends alerts when pre-defined thresholds are exceeded. The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: November 2, 2021
    Assignees: Frostime LLC, NDSU Research Foundation
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Maria Grazia Verardi, Robert A. Sailer, William John Refling
  • Publication number: 20200318862
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel encompassing a container which is either vertically positioned in an upright or an upside-down position. The liquid and/or gas CO2 coolant is then released into a capillary system or flow metering system to allow the CO2 to enter a second body to where the CO2 coolant properties may be leveraged. The second body includes, by way of example, a plate, a cushion, a spot treatment pad for a person's muscle, or a cooler. The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which sends alerts when pre-defined thresholds are exceeded. The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid.
    Type: Application
    Filed: February 27, 2020
    Publication date: October 8, 2020
    Applicants: Frostime LLC, NORTH DAKOTA STATE UNIVERSITY
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Harry Holzwanger, Maria Grazia Verardi, Robert A. Sailer, William John Refling
  • Patent number: 10598409
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel encompassing a container which is either vertically positioned in an upright or an upside-down position. The liquid and/or gas CO2 coolant is then released into a capillary system or flow metering system to allow the CO2 to enter a second body to where the CO2 coolant properties may be leveraged. The second body includes, by way of example, a plate, a cushion, a spot treatment pad for a person's muscle, or a cooler. The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which sends alerts when pre-defined thresholds are exceeded. The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: March 24, 2020
    Assignees: Frostime LLC, NDSU Research Foundation
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Harry Holzwanger, Maria Grazia Verardi, Robert A. Sailer, Justin Hoey, William John Refling
  • Patent number: 10345015
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel and consisting of a specially designed unit where the containers are vertically positioned in an upright or upside-down position. The liquid and/or gas CO2 coolant is then released into capillary tube(s) embedded into a heat transfer plate or heat exchanger thus leveraging the CO2 coolant properties. The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which can be operated remotely and/or via a touch screen and which sends alerts when pre-defined thresholds are exceeded. The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid. The invention's cooling system also encompasses check valves, which avoid liquid and/or gas CO2 from escaping when removing or replacing CO2 containers individually.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: July 9, 2019
    Assignees: Frostime LLC, NDSU Research Foundation
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Harry Holzwanger, Maria Grazia Verardi, Robert A. Sailer, Justin Hoey
  • Publication number: 20180274824
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel encompassing a container which is either vertically positioned in an upright or an upside-down position. The liquid and/or gas CO2 coolant is then released into a capillary system or flow metering system to allow the CO2 to enter a second body to where the CO2 coolant properties may be leveraged. The second body includes, by way of example, a plate, a cushion, a spot treatment pad for a person's muscle, or a cooler. The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which sends alerts when pre-defined thresholds are exceeded. The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 27, 2018
    Applicants: Frostime LLC, NORTH DAKOTA STATE UNIVERSITY
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Harry Holzwanger, Maria Grazia Verardi, Robert A. Sailer, Justin Hoey, William John Refling
  • Publication number: 20180266734
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel and consisting of a specially designed unit where the containers are vertically positioned in an upright or upside-down position. The liquid and/or gas CO2 coolant is then released into capillary tube(s) embedded into a heat transfer plate or heat exchanger thus leveraging the CO2 coolant properties. The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which can be operated remotely and/or via a touch screen and which sends alerts when pre-defined thresholds are exceeded. The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid. The invention's cooling system also encompasses check valves, which avoid liquid and/or gas CO2 from escaping when removing or replacing CO2 containers individually.
    Type: Application
    Filed: May 17, 2018
    Publication date: September 20, 2018
    Applicants: Frostime LLC, NORTH DAKOTA STATE UNIVERSITY
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Harry Holzwanger, Maria Grazia Verardi, Robert A. Sailer, Justin Hoey
  • Publication number: 20180259230
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel and consisting of a specially designed unit where the containers are vertically positioned in an upright or upside-down position. The liquid and/or gas CO2 coolant is then released into capillary tube(s) embedded into a heat transfer plate or heat exchanger thus leveraging the CO2 coolant properties. The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which can be operated remotely and/or via a touch screen and which sends alerts when pre-defined thresholds are exceeded. The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid. The invention's cooling system also encompasses check valves, which avoid liquid and/or gas CO2 from escaping when removing or replacing CO2 containers individually.
    Type: Application
    Filed: May 13, 2018
    Publication date: September 13, 2018
    Applicants: Frostime LLC, NORTH DAKOTA STATE UNIVERSITY
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Harry Holzwanger, Maria Grazia Verardi, Robert A. Sailer, Justin Hoey
  • Publication number: 20180202692
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel and consisting of a specially designed unit where the containers are vertically positioned in an upright or upside-down position. The liquid and/or gas CO2 coolant is then released into capillary tube(s) embedded into a heat transfer plate or heat exchanger thus leveraging the CO2 coolant properties. The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which can be operated remotely and/or via a touch screen and which sends alerts when pre-defined thresholds are exceeded. The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid. The invention's cooling system also encompasses check valves, which avoid liquid and/or gas CO2 from escaping when removing or replacing CO2 containers individually.
    Type: Application
    Filed: March 18, 2018
    Publication date: July 19, 2018
    Applicants: Frostime LLC, NORTH DAKOTA STATE UNIVERSITY
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Harry Holzwanger, Maria Grazia Verardi, Robert A. Sailer, Justin Hoey
  • Patent number: 9976782
    Abstract: Standalone and self-contained cooling systems using compressed liquid and/or gas C02 containers positioned in an insulated or non-insulated vessel and consisting of a specially designed unit where the containers are vertically positioned in an upright or upside-down position. The liquid and/or gas CO2 coolant is then released into capillary tube(s) embedded into a heat transfer plate or heat exchanger thus leveraging the C02 coolant properties. The temperature is controlled by a metering C02 releasing system encompassing an electronic control device which can be operated remotely and/or via a touch screen and which sends alerts when pre-defined thresholds are exceeded. The invention's metering C02 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid. The invention's cooling system also encompasses check valves, which avoid liquid and/or gas C02 from escaping when removing or replacing C02 containers individually.
    Type: Grant
    Filed: December 18, 2016
    Date of Patent: May 22, 2018
    Assignees: Frostime LLC, NDSU Research Foundation
    Inventors: Mark Holzwanger, Xianghong Henry Liu, Heng Hu, Harry Holzwanger, Maria Grazia Verardi, Robert A. Sailer, Justin Hoey