Patents by Inventor Mariappan Parans Paranthaman

Mariappan Parans Paranthaman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11590717
    Abstract: A magnetic ink composition for three-dimensional (3D) printing a bonded magnet is provided. The magnetic ink composition includes magnetic particles, a polymer binder and a solvent. A 3D printing method for fabrication of a bonded magnet using the magnetic ink composition is also provided.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: February 28, 2023
    Assignees: UT-Battelle, LLC, Iowa State University Research Foundation, Inc.
    Inventors: Brett G. Compton, Mariappan Parans Paranthaman, Orlando Rios, Cajetan I. Nlebedim
  • Patent number: 11541372
    Abstract: An adsorbent for a target compound can include porous carbon particles having pores with a predominant pore size less than 10 nm, and magnetic nanoparticles (MNP) nucleated on the carbon surface and within the pores of carbon particles to provide a carbon magnetic nanoparticle adsorbent (C-MNA). A method for removing target compounds with an adsorbent, a system for removing contaminants from a liquid, and a method for adsorbing target compounds from a fluid are also disclosed.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: January 3, 2023
    Assignees: UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION, UT-BATTELLE, LLC
    Inventors: Mariappan Parans Paranthaman, Constantinos Tsouris, Samuel F. Evans, Marko R. Ivancevic
  • Publication number: 20220272982
    Abstract: Provided is a metal organic framework (MOF) comprising copper ions. Also provided are resin powders, granules or pellets comprising the MOF. In some embodiments, the resin powders, granules or pellets are antimicrobial. Also provided are fibers or sheets comprising the MOF. In some embodiments, the fibers or sheets are antimicrobial. Processes for preparing the MOF are also provided.
    Type: Application
    Filed: February 15, 2022
    Publication date: September 1, 2022
    Inventors: Steven J. Monaco, Richard J. Lee, Alan M. Levine, Jonathan Lyle Wistrom, Mariappan Parans Paranthaman, Merlin Theodore, Bryan Howard Bellaire, Nathan Drew Peroutka-Bigus
  • Publication number: 20220157499
    Abstract: A method for producing a bonded magnet, comprising: (i) low-shear compounding of a thermoplastic polymer and magnetic particles to form an initial homogeneous mixture thereof; (ii) feeding the initial homogeneous mixture into a plasticator comprising a low-shear single screw rotating unidirectionally toward a die orifice and housed within a heated barrel to result in heating of the initial homogeneous mixture until the thermoplastic polymer melts and forms a further homogeneous mixture, wherein said further homogeneous mixture is transported within threads of the single screw towards the die orifice and exits the die orifice as a solid pellet; (iii) conveying the solid pellet into a mold and compression molding the pellet in the mold, to form the bonded magnet, wherein the bonded magnet possesses a magnetic particle loading of at least 80 vol % and exhibits one or more magnetic properties varying by less than 5% throughout the bonded magnet.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 19, 2022
    Inventors: Uday Kumar Vaidya, Mariappan Parans Paranthaman, Vlastimil Kunc, Ahmed A. Hassen
  • Publication number: 20210346863
    Abstract: An adsorbent for a target compound can include porous carbon particles having pores with a predominant pore size less than 10 nm, and magnetic nanoparticles (MNP) nucleated on the carbon surface and within the pores of carbon particles to provide a carbon magnetic nanoparticle adsorbent (C-MNA). A method for removing target compounds with an adsorbent, a system for removing contaminants from a liquid, and a method for adsorbing target compounds from a fluid are also disclosed.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 11, 2021
    Inventors: MARIAPPAN PARANS PARANTHAMAN, CONSTANTINOS TSOURIS, SAMUEL F. EVANS, MARKO R. IVANCEVIC
  • Publication number: 20210323072
    Abstract: An electromagnet alignment system for in-situ alignment of a magnetic particulate material is provided. The magnetic particulate material is dispensed through an orifice of a dispensing nozzle used for 3D printing. The system has an electromagnet assembly having a coil. The coil is configured to generate a pulsed magnetic field having a target magnetic flux intensity upon energization of the coil when the magnetic particulate material is being heated and moved through the dispensing nozzle. As a result, the magnetic particulate material is at least partially aligned with respect to a direction by the pulsed magnetic field. The system further includes a power source for implementing the energization of the coil.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 21, 2021
    Inventors: Mariappan Parans Paranthaman, Brian K. Post, Brian C. Sales
  • Publication number: 20210323070
    Abstract: Embodiments of the present invention provide an electromagnet alignment system for AM or 3D printing technology providing improved in-situ alignment of the magnetic particulate material as it is dispensed during deposition to form a 3D shape. In-situ alignment of the magnetic particulate material can be controlled to be unidirectional or multi-directional.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 21, 2021
    Inventors: Cajetan Ikenna Nlebedim, Abhishek Sarkar, Matthew J. Kramer, Thomas Lograsso, Christopher Haase, Somashekara Adinarayanappa, Mariappan Parans Paranthaman
  • Patent number: 10985372
    Abstract: A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. The pyrolysis can be conducted at a temperature from 1100° C. to 1490° C. A method of making a battery electrode and a lithium ion or sodium ion battery is also disclosed.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: April 20, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Amit K. Naskar, Mariappan Parans Paranthaman
  • Publication number: 20210057149
    Abstract: A bonded soft magnet object comprising bonded soft magnetic particles of an iron-containing alloy having a soft magnet characteristic, wherein the bonded soft magnetic particles have a particle size of at least 200 nm and up to 100 microns. Also described herein is a method for producing the bonded soft magnet by indirect additive manufacturing (IAM), such as by: (i) producing a soft magnet preform by bonding soft magnetic particles with an organic binder, wherein the magnetic particles have an iron-containing alloy composition with a soft magnet characteristic, and wherein the particles of the soft magnet material have a particle size of at least 200 nm and up to 100 microns; (ii) subjecting the preform to an elevated temperature sufficient to remove the organic binder to produce a binder-free preform; and (iii) sintering the binder-free preform at a further elevated temperature to produce the bonded soft magnet.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Inventors: Mariappan Parans Paranthaman, Corson L. Cramer, Peeyush Nandwana, Amelia M. Elliott, Chins Chinnasamy
  • Patent number: 10879533
    Abstract: Compositions and methods of making compositions are provided for nitride- and/or oxide-modified electrode compositions. In certain embodiments, the nitride- and/or oxide-modified compositions have the general formula M1-zM?zOaF3-xNy. Such compositions may be used as bulk or surface compositions, and used in a battery as the anode or cathode. In other embodiments, the electrode includes a surface coating composition selected from metal nitrides and metal oxides, and a core composition having the formula M1-zM?zOaF3-x, or an oxide fluoride.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: December 29, 2020
    Assignee: UT-BATTELLE, LLC
    Inventors: Craig A. Bridges, Mariappan Parans Paranthaman, Gabriel M. Veith, Zhonghe Bi
  • Patent number: 10766181
    Abstract: A method for producing magnet-polymer pellets useful as a feedstock in an additive manufacturing process, comprising: (i) blending thermoplastic polymer and hard magnetic particles; (ii) feeding the blended magnet-polymer mixture into a pre-feed hopper that feeds directly into an inlet of a temperature-controlled barrel extruder; (iii) feeding the blended magnet-polymer mixture into the barrel extruder at a fixed feed rate of 5-20 kg/hour, wherein the temperature at the outlet is at least to no more than 10° C. above a glass transition temperature of the blended magnet-polymer mixture; (iv) feeding the blended magnet-polymer mixture directly into an extruding die; (v) passing the blended magnet-polymer mixture through the extruding die at a fixed speed; and (vi) cutting the magnet-polymer mixture at regular intervals as the mixture exits the extruding die at the fixed speed. The use of the pellets as feed material in an additive manufacturing process is also described.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: September 8, 2020
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan Parans Paranthaman, Ling Li, Vlastimil Kunc, Brian K. Post, Orlando Rios, Robert H. Fredette, John Ormerod
  • Patent number: 10586640
    Abstract: A bulk high performance permanent magnet comprising a neodymium-iron-boron core having an outer surface, and a coercivity-enhancing element residing on at least a portion of said outer surface, with an interior portion of said neodymium-iron-boron core not having said coercivity-enhancing element therein. Also described herein is a method for producing the high-coercivity bulk permanent magnet, the method comprising: (i) depositing a coercivity-enhancing element on at least a portion of an outer surface of a neodymium-iron-boron core substrate to form a coated permanent magnet; and (ii) subjecting the coated permanent magnet to a pulse thermal process that heats said outer surface to a substantially higher temperature than an interior portion of said neodymium-iron-boron core substrate, wherein said substantially higher temperature is at least 200° C.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: March 10, 2020
    Assignees: UT-BATTELLE, LLC, IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC., LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Mariappan Parans Paranthaman, Michael A. McGuire, David S. Parker, Orlando Rios, Brian C. Sales, Huseyin Ucar, Scott K. McCall, R. William McCallum, Cajetan I. Nlebedim
  • Patent number: 10460881
    Abstract: A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer to produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 29, 2019
    Assignees: UT-Battelle, LLC, Drexel University
    Inventors: Amit K Naskar, Mariappan Parans Paranthaman, Muhammad Boota, Yury Gogotsi
  • Publication number: 20190260026
    Abstract: A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. The pyrolysis can be conducted at a temperature from 1100° C. to 1490° C. A method of making a battery electrode and a lithium ion or sodium ion battery is also disclosed.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: Amit K. Naskar, Mariappan Parans Paranthaman
  • Patent number: 10355268
    Abstract: A carbon-metal oxide composite material comprising: (i) carbon-carbon composite particles in which an amorphous carbon black core is bonded to crystalline graphitic carbon shells; and (ii) a metal oxide material bonded with said carbon-carbon composite particles, wherein said metal oxide material is included in an amount of at least about 10 wt. % by weight of said carbon-carbon composite particles and metal oxide material. Alkali-ion batteries containing the above-described composite as anode are also described. Methods for producing the above-described composite are also described. The method can include, for example, subjecting pulverized rubber tire waste to a sulfonation process and pyrolyzing the sulfonated rubber to produce the carbon-carbon composite particles, as described above, followed by admixing and compounding a metal oxide material with the carbon-carbon composite particles.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: July 16, 2019
    Assignees: UT-Battelle, LLC, University of Tennesse Research Foundation
    Inventors: Yunchao Li, Mariappan Parans Paranthaman, Amit K. Naskar, Kokouvi M. Akato
  • Patent number: 10320000
    Abstract: A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. The pyrolysis can be conducted at a temperature from 1100° C. to 1490° C. A method of making a battery electrode and a lithium ion or sodium ion battery is also disclosed.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: June 11, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Amit K. Naskar, Mariappan Parans Paranthaman
  • Patent number: 10266915
    Abstract: A solid particulate composition useful in extracting a lithium salt from aqueous solutions, the composition comprising lithium, metal atoms, oxygen atoms, and at least one anionic species (X) selected from halide, nitrate, sulfate, carbonate and bicarbonate, all in a framework structure, wherein said metal atoms are selected from at least one of oxophilic main group metal and oxophilic transition metal atoms, provided that, if the metal atoms comprise aluminum atoms, then at least 10 mol % of said aluminum atoms are substituted with at least one metal atom selected from said at least one oxophilic main group and oxophilic transition metal atoms, other than aluminum, and wherein said lithium is present in said composition in an amount less than a saturated amount in order to permit extraction of lithium salt. Methods for extracting and recovering a lithium salt from an aqueous solution by use of the above-described composition are also described.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 23, 2019
    Assignees: UT-Battelle, LLC, Alger Alternative Energy, LLC
    Inventors: Mariappan Parans Paranthaman, Ramesh R. Bhave, Bruce A. Moyer, Stephen Harrison
  • Patent number: 10179313
    Abstract: Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: January 15, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Michael Z. Hu, John T. Simpson, Tolga Aytug, Mariappan Parans Paranthaman, Matthew R. Sturgeon
  • Patent number: 10128489
    Abstract: Compositions and methods of making are provided for surface modified electrodes and batteries comprising the same. The compositions may comprise a base composition having an active material capable of intercalating the metal ions during a discharge cycle and deintercalating the metal ions during a charge cycle, wherein the active material is selected from the group consisting of LiCoO2, LiMn2O4, Li2MnO3, LiNiO2, LiMn1.5Ni0.5O4, LiFePO4, Li2FePO4F, Li3CoNiMnO6, Li(LiaNixMnyCoz)O2, LiaMn1.5-bNi0.5-cMdO4-x, and mixtures thereof. The compositions may also comprise an annealed composition covering a portion of the base composition, formed by a reaction of the base composition in a reducing atmosphere. The methods of making comprise providing the base composition and annealing the base electrode in a reducing atmosphere.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: November 13, 2018
    Assignee: UT-BATTELLE, LLC
    Inventors: Mariappan Parans Paranthaman, Craig A. Bridges, Sukeun Yoon
  • Publication number: 20180316011
    Abstract: Compositions and methods of making compositions are provided for nitride- and/or oxide-modified electrode compositions. In certain embodiments, the nitride- and/or oxide-modified compositions have the general formula M1-zM?zOaF3-xNy. Such compositions may be used as bulk or surface compositions, and used in a battery as the anode or cathode. In other embodiments, the electrode includes a surface coating composition selected from metal nitrides and metal oxides, and a core composition having the formula M1-zM?zOaF3-x, or an oxide fluoride.
    Type: Application
    Filed: July 2, 2018
    Publication date: November 1, 2018
    Applicant: UT-BATTELLE, LLC
    Inventors: Craig A. Bridges, Mariappan Parans Paranthaman, Gabriel M. Veith, Zhonghe Bi