Patents by Inventor Marino Dimarzo

Marino Dimarzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10300313
    Abstract: A method and devices are described, in which a transformable fiber at a first crystal structure is shaped from its pre-determined configuration into a new shaped configuration. The new shaped configuration of the transformable fiber is inserted into a cavity of a heat and fire protective item. The new shaped configuration of the transformable fiber is heated to above its transformation temperature to a second crystal structure. The heating transforms the new shaped configuration to its pre-determined configuration, wherein the pre-determined configuration forms an air pocket within the heat and fire protective item. The transformable fiber is cooled below its transformation temperature to revert the transformable fiber back to the new shaped configuration at the first crystal structure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 28, 2019
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Amr M. Baz, Marino diMarzo
  • Publication number: 20070205903
    Abstract: The present invention relates to an integrated sensor for monitoring the allowable heat exposure time for firefighters, and to protective equipment containing such a sensor. More specifically, the invention concerns a system for providing a firefighter with improved information as to the firefighter's remaining safe fire exposure time. The system comprises: a sensor for monitoring ambient temperature, moisture transfer, and/or additional data relevant to the firefighter's remaining fire exposure time; a computer processor that is programmed to execute an algorithm for processing the sensed data to determine such remaining fire exposure time; and a warning notification system for communicating such remaining exposure time to the firefighter. In preferred embodiments, the sensor of the present invention monitors thermal conditions at the outer surface of protective equipment and generates information, preferably instantaneously, concerning the maximum allowable residence of an individual in a fire environment.
    Type: Application
    Filed: February 26, 2007
    Publication date: September 6, 2007
    Applicant: University of Maryland, College Park
    Inventors: Marino diMarzo, Amr M. Baz
  • Patent number: 7229067
    Abstract: A foam-generating assembly for use in generating a nitrogen-containing foam useful in preventing or extinguishing fires includes a foam generator, a first tank containing a foamable aqueous liquid and a second tank containing nitrogen gas, the foam generator including a header which is hollowed out to provide a swirl chamber defined by an outer cylindrical wall, an inner cylindrical wall and a floor, a spray nozzle in the center of the floor for spraying foamable aqueous liquid supplied from the first tank, and an orifice in the inner cylindrical wall to supply a tangential flow of nitrogen gas from the second tank into the swirl chamber and around the spray nozzle and the liquid spray emitted therefrom and provide a vortex flow of a mixture of foamable aqueous liquid and nitrogen gas. First and second foaming screens are provided through which the vortex flow passes to provide first a coarse nitrogen-containing foam and then a fine nitrogen-containing foam.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: June 12, 2007
    Assignee: University of Maryland
    Inventors: Marino Dimarzo, John Gunderson
  • Publication number: 20050263297
    Abstract: A foam-generating assembly for use in generating a nitrogen-containing foam useful in preventing or extinguishing fires includes a foam generator, a first tank containing a foamable aqueous liquid and a second tank containing nitrogen gas, the foam generator including a header which is hollowed out to provide a swirl chamber defined by an outer cylindrical wall, an inner cylindrical wall and a floor, a spray nozzle in the center of the floor for spraying foamable aqueous liquid supplied from the first tank, and an orifice in the inner cylindrical wall to supply a tangential flow of nitrogen gas from the second tank into the swirl chamber and around the spray nozzle and the liquid spray emitted therefrom and provide a vortex flow of a mixture of foamable aqueous liquid and nitrogen gas. First and second foaming screens are provided through which the vortex flow passes to provide first a coarse nitrogen-containing foam and then a fine nitrogen-containing foam.
    Type: Application
    Filed: April 29, 2005
    Publication date: December 1, 2005
    Inventors: Marino Dimarzo, John Gunderson
  • Patent number: 6739178
    Abstract: A sensor probe and method of use for determining the temperature, velocity, and/or liquid volumetric fraction of gas laden with droplets. In one variation, the probe includes a single heating element used in a well-characterized flow. The heating element is maintained above the Leidenfrost transition for the droplets, which prevents cooling effects from the droplets from impacting the temperature measurement. In another variation, the probe includes two or more heating elements arranged in similar flow environments. The property of interest is derived by relying on thermodynamic and heat transfer principles, which are not usable in conjunction with conventional devices.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: May 25, 2004
    Assignee: University of Maryland
    Inventors: Marino Dimarzo, Paolo Ruffino
  • Patent number: 6732568
    Abstract: A sensor probe and method of use for determining the temperature, velocity, and/or liquid volumetric fraction of gas laden with droplets. In one variation, the probe includes a single heating element used in a well-characterized flow. The heating element is maintained above the Leidenfrost transition for the droplets, which prevents cooling effects from the droplets from impacting the temperature measurement. In another variation, the probe includes two or more heating elements arranged in similar flow environments. The property of interest is derived by relying on thermodynamic and heat transfer principles, which are not usable in conjunction with conventional devices.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: May 11, 2004
    Assignee: University of Maryland
    Inventors: Marino Dimarzo, Paolo Ruffino
  • Publication number: 20030209056
    Abstract: A sensor probe and method of use for determining the temperature, velocity, and/or liquid volumetric fraction of gas laden with droplets. In one variation, the probe includes a single heating element used in a well-characterized flow. The heating element is maintained above the Leidenfrost transition for the droplets, which prevents cooling effects from the droplets from impacting the temperature measurement. In another variation, the probe includes two or more heating elements arranged in similar flow environments. The property of interest is derived by relying on thermodynamic and heat transfer principles, which are not usable in conjunction with conventional devices.
    Type: Application
    Filed: June 20, 2003
    Publication date: November 13, 2003
    Applicant: University of Maryland
    Inventors: Marino Dimarzo, Paolo Ruffino
  • Publication number: 20030209055
    Abstract: A sensor probe and method of use for determining the temperature, velocity, and/or liquid volumetric fraction of gas laden with droplets. In one variation, the probe includes a single heating element used in a well-characterized flow. The heating element is maintained above the Leidenfrost transition for the droplets, which prevents cooling effects from the droplets from impacting the temperature measurement. In another variation, the probe includes two or more heating elements arranged in similar flow environments. The property of interest is derived by relying on thermodynamic and heat transfer principles, which are not usable in conjunction with conventional devices.
    Type: Application
    Filed: June 20, 2003
    Publication date: November 13, 2003
    Applicant: University of Maryland
    Inventors: Marino Dimarzo, Paolo Ruffino
  • Patent number: 6609412
    Abstract: A sensor probe and method of use for determining the temperature, velocity, and/or liquid volumetric fraction of gas laden with droplets. In one variation, the probe includes a single heating element used in a well-characterized flow. The heating element is maintained above the Leidenfrost transition for the droplets, which prevents cooling effects from the droplets from impacting the temperature measurement. In another variation, the probe includes two or more heating elements arranged in similar flow environments. The property of interest is derived by relying on thermodynamic and heat transfer principles, which are not usable in conjunction with conventional devices.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: August 26, 2003
    Assignee: University of Maryland
    Inventors: Marino Dimarzo, Paolo Ruffino
  • Publication number: 20030041650
    Abstract: A sensor probe and method of use for determining the temperature, velocity, and/or liquid volumetric fraction of gas laden with droplets. In one variation, the probe includes a single heating element used in a well-characterized flow. The heating element is maintained above the Leidenfrost transition for the droplets, which prevents cooling effects from the droplets from impacting the temperature measurement. In another variation, the probe includes two or more heating elements arranged in similar flow environments. The property of interest is derived by relying on thermodynamic and heat transfer principles, which are not usable in conjunction with conventional devices.
    Type: Application
    Filed: March 22, 2002
    Publication date: March 6, 2003
    Inventors: Marino Dimarzo, Paolo Ruffino