Patents by Inventor Mario David Silvetti

Mario David Silvetti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11173579
    Abstract: A carrier head for a chemical mechanical polisher includes a base, a substrate mounting surface, an annular inner ring and an outer ring. The inner ring has a lower surface configured to contact an upper surface of a substrate positioned on the substrate mounting surface, an outer surface, and an inwardly facing surface extending downwardly from the lower surface and is configured to circumferentially surround the edge of the substrate, the inner ring vertically movable relative to the substrate mounting surface. The outer ring has an inner surface circumferentially surrounding the inner ring, an outer surface, and a lower surface to contact the polishing pad, and the outer ring is vertically movable relative to and independently of the substrate mounting surface and the inner ring.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Mario David Silvetti, Yin Yuan, Samuel Chu-Chiang Hsu, Huanbo Zhang, Gautam Shashank Dandavate
  • Publication number: 20180304441
    Abstract: A carrier head for a chemical mechanical polisher includes a base, a substrate mounting surface, an annular inner ring and an outer ring. The inner ring has a lower surface configured to contact an upper surface of a substrate positioned on the substrate mounting surface, an outer surface, and an inwardly facing surface extending downwardly from the lower surface and is configured to circumferentially surround the edge of the substrate, the inner ring vertically movable relative to the substrate mounting surface. The outer ring has an inner surface circumferentially surrounding the inner ring, an outer surface, and a lower surface to contact the polishing pad, and the outer ring is vertically movable relative to and independently of the substrate mounting surface and the inner ring.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventors: Hung Chih Chen, Mario David Silvetti, Yin Yuan, Samuel Chu-Chiang Hsu, Huanbo Zhang, Gautam Shashank Dandavate
  • Patent number: 9812344
    Abstract: A wafer processing system has a ring maintenance module for loading wafers into a chuck assembly, and for cleaning and inspecting the chuck assembly used in electroplating processors of the system. A shaft is attached to a rotor plate. A rotation motor rotates the shaft and a rotor plate on the shaft. A chuck clamp on an upper end of the shaft holds the chuck assembly onto the rotor plate. A lift motor raises and lowers the rotor plate and the shaft, to move open the chuck assembly for wafer loading and unloading, and to move the chuck assembly into different process positions. A swing arm having spray nozzles may be provided for cleaning the chuck assembly.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: November 7, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Jason Rye, Mario David Silvetti, Randy A. Harris, Bryan Puch, Vincent Steffan Francischetti, Satish Sundar
  • Publication number: 20160240405
    Abstract: A high throughput stand-alone anneal system has a horizontal row of docking stations at a front wall of an enclosure. A rack in the enclosure has a plurality of vertically stacked anneal modules. Robots within the enclosure move wafers from the docking stations to one of the anneal modules for rapid thermal anneal processing.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Inventors: Vincent Steffan Francischetti, Robert B. Moore, Mario David Silvetti, Roey Shaviv
  • Publication number: 20160225656
    Abstract: A wafer processing system has a ring maintenance module for loading wafers into a chuck assembly, and for cleaning and inspecting the chuck assembly used in electroplating processors of the system. A shaft is attached to a rotor plate. A rotation motor rotates the shaft and a rotor plate on the shaft. A chuck clamp on an upper end of the shaft holds the chuck assembly onto the rotor plate. A lift motor raises and lowers the rotor plate and the shaft, to move open the chuck assembly for wafer loading and unloading, and to move the chuck assembly into different process positions. A swing arm having spray nozzles may be provided for cleaning the chuck assembly.
    Type: Application
    Filed: February 3, 2015
    Publication date: August 4, 2016
    Inventors: Jason Rye, Mario David Silvetti, Randy A. Harris, Bryan Puch, Vincent Steffan Francischetti, Satish Sundar
  • Publication number: 20120034848
    Abstract: A carrier head for a chemical mechanical polisher includes a base, a substrate mounting surface, an annular inner ring and an outer ring. The inner ring has a lower surface configured to contact an upper surface of a substrate positioned on the substrate mounting surface, an outer surface, and an inwardly facing surface extending downwardly from the lower surface and is configured to circumferentially surround the edge of the substrate, the inner ring vertically movable relative to the substrate mounting surface. The outer ring has an inner surface circumferentially surrounding the inner ring, an outer surface, and a lower surface to contact the polishing pad, and the outer ring is vertically movable relative to and independently of the substrate mounting surface and the inner ring.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 9, 2012
    Inventors: Hung Chih Chen, Mario David Silvetti, Yin Yuan
  • Patent number: 7997851
    Abstract: A new apparatus for processing substrates is disclosed. A multi-level load lock chamber having four environmentally isolated chambers interfaces with a transfer chamber that has a robotic assembly. The robotic assembly has two arms that each can move horizontally as the robotic assembly rotates about its axis. The arms can reach into the isolated chambers of the load lock to receive substrates from the bottom isolated chambers, transport the substrates to process chambers, and then place the substrates in the upper chambers. The isolated chambers in the load lock chamber may have a pivotably attached lid that may be opened to access the inside of the isolated chambers.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 16, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Robert B. Moore, Eric Ruhland, Satish Sundar, Mario David Silvetti
  • Publication number: 20100145513
    Abstract: A robotic positioning system that cooperates with a sensing system to correct robot motion is provided. The sensing system is decoupled from the sensors used conventionally to control the robot's motion, thereby providing repeatable detection of the robot's true position. In one embodiment, the positioning system includes a robot, a controller, a motor sensor and a decoupled sensor. The robot has at least one motor for manipulating a linkage controlling the displacement of a substrate support coupled thereto. The motor sensor is provides the controller with motor actuation information utilized to move the substrate support. The decoupled sensor provides information indicative of the true position the substrate support that may be utilized to correct the robot's motion.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 10, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Pyongwon Yim, Satish Sundar, Vinay Shah, Mario David Silvetti, Douglas Kitajima, Venkatesh Babu, Visweswaren Sivaramakrishnan, Indrajit Lahiri, Surinder Bedi
  • Patent number: 7695232
    Abstract: A new apparatus for processing substrates is disclosed. A multi-level load lock chamber having four environmentally isolated chambers interfaces with a transfer chamber that has a robotic assembly. The robotic assembly has two arms that each can move horizontally as the robotic assembly rotates about its axis. The arms can reach into the isolated chambers of the load lock to receive substrates from the bottom isolated chambers, transport the substrates to process chambers, and then place the substrates in the upper chambers. The isolated chambers in the load lock chamber may have a pivotably attached lid that may be opened to access the inside of the isolated chambers.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Robert B. Moore, Eric Ruhland, Satish Sundar, Mario David Silvetti
  • Patent number: 7582167
    Abstract: In one embodiment, the invention is a guard ring for reducing particle entrapment along a moveable shaft of a substrate support. In one embodiment, the guard ring comprises a substantially annular guard ring positioned within a step formed in a sleeve that circumscribes the shaft. The guard ring is positioned to substantially seal a gap separating the shaft from the sleeve, so that the amount of particles and foreign matter that travel within or become trapped in the gap is substantially reduced. In another embodiment, a guard ring comprises a base portion having an inner perimeter and an outer perimeter, a first flange coupled to the inner perimeter, a second flange coupled to the outer perimeter, and a continuous channel separating the first flange from the second flange. The first flange is adapted to function as a spring that accommodates displacement of the shaft.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: September 1, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Andrzej Kaszuba, Sophia M. Velastegui, Visweswaren Sivaramakrishnan, Pyongwon Yim, Mario David Silvetti, Tom K. Cho, Indrajit Lahiri, Surinder S. Bedi
  • Publication number: 20090092466
    Abstract: A new apparatus for processing substrates is disclosed. A multi-level load lock chamber having four environmentally isolated chambers interfaces with a transfer chamber that has a robotic assembly. The robotic assembly has two arms that each can move horizontally as the robotic assembly rotates about its axis. The arms can reach into the isolated chambers of the load lock to receive substrates from the bottom isolated chambers, transport the substrates to process chambers, and then place the substrates in the upper chambers. The isolated chambers in the load lock chamber may have a pivotably attached lid that may be opened to access the inside of the isolated chambers.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 9, 2009
    Inventors: Robert B. Moore, Eric Ruhland, Satish Sundar, Mario David Silvetti
  • Publication number: 20090068356
    Abstract: Embodiments of the present invention are generally directed to apparatus and methods for a plasma-processing chamber requiring less maintenance and downtime and possessing improved reliability over the prior art. In one embodiment, the apparatus includes a substrate support resting on a ceramic shaft, an inner shaft allowing for electrical connections to the substrate support at atmospheric pressure, an aluminum substrate support resting on but not fixed to a ceramic support structure, sapphire rest points swaged into the substrate support, and a heating element inside the substrate support arranged in an Archimedes spiral to reduce warping of the substrate support and to increase its lifetime. Methods include increasing time between in-situ cleans of the chamber by reducing particle generation from chamber surfaces. Reduced particle generation occurs via temperature control of chamber components and pressurization of non-processing regions of the chamber relative to the processing region with a purge gas.
    Type: Application
    Filed: October 22, 2008
    Publication date: March 12, 2009
    Inventors: MARIO David SILVETTI, David H. Quach, Bok Hoen Kim, Thomas Nowak, Thomas K. Cho, Fred H. Hariz, Robert B. Moore
  • Patent number: 7374391
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 20, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Michael Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Mario David Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Patent number: 7374393
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: May 20, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Mario David Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Publication number: 20070292244
    Abstract: A new apparatus for processing substrates is disclosed. A multi-level load lock chamber having four environmentally isolated chambers interfaces with a transfer chamber that has a robotic assembly. The robotic assembly has two arms that each can move horizontally as the robotic assembly rotates about its axis. The arms can reach into the isolated chambers of the load lock to receive substrates from the bottom isolated chambers, transport the substrates to process chambers, and then place the substrates in the upper chambers. The isolated chambers in the load lock chamber may have a pivotably attached lid that may be opened to access the inside of the isolated chambers.
    Type: Application
    Filed: June 15, 2006
    Publication date: December 20, 2007
    Inventors: ROBERT B. MOORE, Eric Ruhland, Satish Sundar, Mario David Silvetti
  • Patent number: 7279049
    Abstract: In one embodiment, the invention is a guard ring for reducing particle entrapment along a moveable shaft of a substrate support. In one embodiment, the guard ring comprises a substantially annular guard ring positioned within a step formed in a sleeve that circumscribes the shaft. The guard ring is positioned to substantially seal a gap separating the shaft from the sleeve, so that the amount of particles and foreign matter that travel within or become trapped in the gap is substantially reduced. In another embodiment, a guard ring comprises a base portion having an inner perimeter and an outer perimeter, a first flange coupled to the inner perimeter, a second flange coupled to the outer perimeter, and a continuous channel separating the first flange from the second flange. The first flange is adapted to function as a spring that accommodates displacement of the shaft.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: October 9, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Andrzej Kaszuba, Sophia M. Velastegui, Visweswaren Sivaramakrishnan, Pyongwon Yim, Mario David Silvetti, Tom K. Cho, Indrajit Lahiri, Surinder S. Bedi
  • Patent number: 7107125
    Abstract: A robotic positioning system that cooperates with a sensing system to correct robot motion is provided. The sensing system is decoupled from the sensors used conventionally to control the robot's motion, thereby providing repeatable detection of the robot's true position. In one embodiment, the positioning system includes a robot, a controller, a motor sensor and a decoupled sensor. The robot has at least one motor for manipulating a linkage controlling the displacement of a substrate support coupled thereto. The motor sensor is provides the controller with motor actuation information utilized to move the substrate support. The decoupled sensor provides information indicative of the true position the substrate support that may be utilized to correct the robot's motion.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: September 12, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Pyongwon Yim, Satish Sundar, Vinay Shah, Mario David Silvetti, Douglas Kitajima, Venkatesh Babu, Visweswaren Sivaramakrishnan, Indrajit Lahiri, Surinder Bedi
  • Patent number: 7094313
    Abstract: A substrate processing system is provided with a processing chamber, an alternating voltage supply, and an impedance matching network. The processing chamber holds a substrate during processing and the alternating voltage supply is connected with the processing chamber to capacitively couple energy to a plasma formed within the processing chamber. The impedance matching network is coupled with the alternating voltage supply and has a variable resistive element and a variable reactive element, whose states respectively define distinct real and imaginary parts of an impedance.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 22, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Eller Y. Juco, Visweswaren Sivaramakrishnan, Mario David Silvetti, Talex Sajoto
  • Patent number: 7024105
    Abstract: A substrate heater assembly for supporting a substrate of a predetermined standardized diameter during processing is provided. In one embodiment, the substrate heater assembly includes a body having an upper surface, a lower surface and an embedded heating element. A substrate support surface is formed in the upper surface of the body and defines a portion of a substrate receiving pocket. An annular wall is oriented perpendicular to the upper surface and has a length of at least one half a thickness of the substrate. The wall bounds an outer perimeter of the substrate receiving pocket and has a diameter less than about 0.5 mm greater than the predetermined substrate diameter.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: April 4, 2006
    Assignee: Applied Materials Inc.
    Inventors: Mark A. Fodor, Sophia M. Velastegui, Soovo Sen, Visweswaren Sivaramakrishnan, Peter Wai-Man Lee, Mario David Silvetti
  • Patent number: 6911403
    Abstract: A method for depositing an organosilicate layer on a substrate includes varying one or more processing conditions during a process sequence for depositing an organosilicate layer from a gas mixture comprising an organosilicon compound in the presence of RF power in a processing chamber. In one aspect, the distance between the substrate and a gas distribution manifold in the processing chamber is varied during processing. Preferably, the method of depositing an organosilicate layer minimizes plasma-induced damage to the substrate.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: June 28, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Lihua Li, Tsutomu Tanaka, Tzu-Fang Huang, Li-Qun Xia, Dian Sugiarto, Visweswaren Sivaramakrishnan, Peter Wai-Man Lee, Mario David Silvetti