Patents by Inventor Mario Reinwand

Mario Reinwand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9829586
    Abstract: A method is disclosed for detecting x-rays using an x-ray detector which includes a direct-conversion semiconductor detector element. Additional radiation is supplied to the semiconductor detector element using a radiation source, and the supply of the additional radiation is controlled and/or regulated on the basis of a specified target value. In at least one embodiment, the target value can be specified in a variable manner over time as a sequence of target values. An x-ray detector system is further disclosed, with which the method can be carried out.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: November 28, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Matthias Strassburg, Stefan Wirth
  • Patent number: 9750467
    Abstract: A direct conversion X-ray detector for the detection of X-rays includes at least a semiconductor used for detecting X-rays, which has areas that are shaded against X-rays and unshaded areas, a pixelated electrode attached to the semiconductor and an all-over electrode attached to the semiconductor opposite the pixelated electrode, and at least one light source to illuminate the all-over electrode with additional light radiation for the purpose of generating additional charge carriers. In an embodiment, the at least one light source is designed such that the shaded areas are irradiated with a different intensity of the additional light radiation than are the unshaded areas. A CT system including the direct conversion X-ray detector is also disclosed, together with a method for the detection of incident X-rays via direct conversion X-ray detector, wherein the shaded areas are irradiated with a different intensity of the additional light radiation than the unshaded areas.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: September 5, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Thorsten Ergler, Edgar Göderer, Björn Kreisler, Mario Reinwand, Christian Schröter
  • Patent number: 9664801
    Abstract: An embodiment of the invention relates to the use of the spectral composition of X-ray radiation in addition to the intensity thereof in order to determine the attenuation caused by an object. Another aspect of an embodiment of the invention is a device, particularly a radiation monitor for an X-ray or CT system, which is suitable for performing the aforementioned procedure according to an embodiment of the invention.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: May 30, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Thilo Hannemann, Mario Reinwand
  • Patent number: 9646731
    Abstract: A direct-converting x-ray radiation detector is disclosed for detecting x-ray radiation, in particular for use in a CT system. In an embodiment, the detector includes a semiconductor material used for detecting the x-ray radiation; at least one collimator; and at least one radiation source, to irradiate the semiconductor material with additional radiation. In at least one embodiment, the at least one collimator includes at least one reflection layer on a side facing the semiconductor material, on which the additional radiation is reflected to the semiconductor material. In another embodiment, a CT system including the direct-converting x-ray radiation detector, and a method for detecting incident x-ray radiation via a direct-converting x-ray radiation detector, in particular for use in a CT system, are disclosed.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: May 9, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Fabrice Dierre, Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Karl Stierstorfer, Matthias Strassburg, Justus Tonn, Stefan Wirth
  • Publication number: 20150216485
    Abstract: A direct conversion X-ray detector for the detection of X-rays includes at least a semiconductor used for detecting X-rays, which has areas that are shaded against X-rays and unshaded areas, a pixelated electrode attached to the semiconductor and an all-over electrode attached to the semiconductor opposite the pixelated electrode, and at least one light source to illuminate the all-over electrode with additional light radiation for the purpose of generating additional charge carriers. In an embodiment, the at least one light source is designed such that the shaded areas are irradiated with a different intensity of the additional light radiation than are the unshaded areas. A CT system including the direct conversion X-ray detector is also disclosed, together with a method for the detection of incident X-rays via direct conversion X-ray detector, wherein the shaded areas are irradiated with a different intensity of the additional light radiation than the unshaded areas.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 6, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Thorsten ERGLER, Edgar Göderer, Björn KREISLER, Mario REINWAND, Christian SCHRÖTER
  • Publication number: 20150219774
    Abstract: An embodiment of the invention relates to the use of the spectral composition of X-ray radiation in addition to the intensity thereof in order to determine the attenuation caused by an object. Another aspect of an embodiment of the invention is a device, particularly a radiation monitor for an X-ray or CT system, which is suitable for performing the aforementioned procedure according to an embodiment of the invention.
    Type: Application
    Filed: July 18, 2013
    Publication date: August 6, 2015
    Inventors: Thilo Hannemann, Mario Reinwand
  • Publication number: 20150221406
    Abstract: A direct-converting x-ray radiation detector is disclosed for detecting x-ray radiation, in particular for use in a CT system. In an embodiment, the detector includes a semiconductor material used for detecting the x-ray radiation; at least one collimator; and at least one radiation source, to irradiate the semiconductor material with additional radiation. In at least one embodiment, the at least one collimator includes at least one reflection layer on a side facing the semiconductor material, on which the additional radiation is reflected to the semiconductor material. In another embodiment, a CT system including the direct-converting x-ray radiation detector, and a method for detecting incident x-ray radiation via a direct-converting x-ray radiation detector, in particular for use in a CT system, are disclosed.
    Type: Application
    Filed: July 9, 2013
    Publication date: August 6, 2015
    Inventors: Fabrice Dierre, Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Karl Stierstorfer, Matthias Strassburg, Justus Tonn, Stefan Wirth
  • Publication number: 20150212215
    Abstract: A method is disclosed for detecting x-rays using an x-ray detector which includes a direct-conversion semiconductor detector element. Additional radiation is supplied to the semiconductor detector element using a radiation source, and the supply of the additional radiation is controlled and/or regulated on the basis of a specified target value. In at least one embodiment, the target value can be specified in a variable manner over time as a sequence of target values. An x-ray detector system is further disclosed, with which the method can be carried out.
    Type: Application
    Filed: July 9, 2013
    Publication date: July 30, 2015
    Inventors: Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Matthias Strassburg, Stefan Wirth
  • Patent number: 9057791
    Abstract: A quantum-counting radiation detector in which signals of individual pixels and signals of combined pixels are evaluated in parallel processing branches and count results are combined in an appropriate manner, thereby reducing the influence of unwanted interference effects for the respective application.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: June 16, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Thilo Hannemann, Silke Janssen, Steffen Kappler, Edgar Kraft, Daniel Niederlöhner, Mario Reinwand
  • Publication number: 20120326049
    Abstract: A quantum-counting radiation detector is disclosed, in particular an x-ray detector. In at least one embodiment, the signals of the individual pixels and the signals of combined pixels are evaluated in parallel processing branches. It is then possible to combine the count results in an appropriate manner, to reduce the influence of unwanted interference effects for the respective application.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 27, 2012
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Thilo Hannemann, Silke Janssen, Steffen Kappler, Edgar Kraft, Daniel Niederlöhner, Mario Reinwand
  • Patent number: 7476025
    Abstract: A shadow mask and method for adjustment are disclosed. The shadow mask may be for an X-ray detector including detector elements, which may further be provided for a computed tomography unit, for example. The shadow mask has a mask plate with holes of which each is assigned a detector element. At least one adjusting hole of the mask plate includes enlarged dimensions in such a way that it is adapted to the dimensions of at least two detector elements. The adjusting hole serves for the method of adjusting the shadow mask over the X-ray detector. Measurement signals of the detector elements that are assigned to the at least one adjusting hole, are determined by using X-radiation. The shadow mask and the X-ray detector are adjusted relative to one another on the basis of a comparison of the measurement signals of the detector elements.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: January 13, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Claus Pohan, Mario Reinwand, Karl Stierstorfer
  • Publication number: 20060198493
    Abstract: A shadow mask and method for adjustment are disclosed. The shadow mask may be for an X-ray detector including detector elements, which may further be provided for a computed tomography unit, for example. The shadow mask has a mask plate with holes of which each is assigned a detector element. At least one adjusting hole of the mask plate includes enlarged dimensions in such a way that it is adapted to the dimensions of at least two detector elements. The adjusting hole serves for the method of adjusting the shadow mask over the X-ray detector. Measurement signals of the detector elements that are assigned to the at least one adjusting hole, are determined by using X-radiation. The shadow mask and the X-ray detector are adjusted relative to one another on the basis of a comparison of the measurement signals of the detector elements.
    Type: Application
    Filed: March 2, 2006
    Publication date: September 7, 2006
    Inventors: Claus Pohan, Mario Reinwand, Karl Stierstorfer
  • Patent number: 7010082
    Abstract: In an x-ray computed tomography apparatus and a method for conducting test measurements therein, a combined phantom is employed that is formed of several individual phantoms, each forming a segment of the combined phantom, and the combined phantom is affixed to a platform of the computed tomography apparatus that is movable with respect to an x-ray data acquisition unit of the computed tomography apparatus. The platform is moved into a first position and a first x-ray absorption distribution of a first segment of the combined phantom is obtained, and the platform is moved into a second position and a second x-ray absorption distribution is obtained of a second segment of the phantom. Movement of the platform and operation of the data acquisition unit for obtaining the first and second x-ray distributions are automatically controlled by a computer program.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: March 7, 2006
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Hein, Helmut Kropfeld, Mario Reinwand
  • Publication number: 20050002495
    Abstract: In an x-ray computed tomography apparatus and a method for conducting test measurements therein, a combined phantom is employed that is formed of several individual phantoms, each forming a segment of the combined phantom, and the combined phantom is affixed to a platform of the computed tomography apparatus that is movable with respect to an x-ray data acquisition unit of the computed tomography apparatus. The platform is moved into a first position and a first x-ray absorption distribution of a first segment of the combined phantom is obtained, and the platform is moved into a second position and a second x-ray absorption distribution is obtained of a second segment of the phantom. Movement of the platform and operation of the data acquisition unit for obtaining the first and second x-ray distributions are automatically controlled by a computer program.
    Type: Application
    Filed: May 28, 2004
    Publication date: January 6, 2005
    Inventors: Peter Hein, Helmut Kropfeld, Mario Reinwand
  • Patent number: 6430252
    Abstract: In an X-ray computed tomography apparatus with retrospective beam hardening correction, an overall image of a body slice under examination is determined from overall attenuation values that are obtained from the body slice. At least one partial image that shows essentially only one body substance, such as bone substance, is extracted from this overall image. Attenuation partial values are employed for determining a correction value. The attenuation values are determined for each overall attenuation value from the at least one partial image by re-projection. A correction value is derived from the beam hardening error that is determined for a material combination of two different reference materials.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: August 6, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mario Reinwand, Karl Stierstorfer
  • Publication number: 20020015476
    Abstract: In an X-ray computed tomography apparatus with retrospective beam hardening correction, an overall image of a body slice under examination is determined from overall attenuation values that are obtained from the body slice. At least one partial image that shows essentially only one body substance, such as bone substance, is extracted from this overall image. Attenuation partial values are employed for determining a correction value. The attenuation values are determined for each overall attenuation value from the at least one partial image by re-projection. A correction value is derived from the beam hardening error that is determined for a material combination of two different reference materials.
    Type: Application
    Filed: July 25, 2001
    Publication date: February 7, 2002
    Applicant: Siemens Aktiengesellschaft
    Inventors: Mario Reinwand, Karl Stierstorfer