Patents by Inventor Mark A. Davison

Mark A. Davison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200054382
    Abstract: Various embodiments are directed to electrosurgical systems for providing an electrosurgical signal to a patient. A control circuit may, for a first application period, apply the electrosurgical signal to first and second electrodes according to a first mode. In the first mode, the control circuit may limit the electrosurgical signal to a first maximum power when the impedance between the first and second electrodes exceeds a first mode threshold. The control circuit may also, for a second application period after the first application period, apply the electrosurgical signal according to a second mode. In the second mode, the control circuit may limit the electrosurgical signal to a second mode maximum power when the impedance between the first and second electrodes exceeds a second mode threshold. The second maximum power may be greater than the first maximum power.
    Type: Application
    Filed: July 8, 2019
    Publication date: February 20, 2020
    Inventors: David C. Yates, Jeffrey D. Messerly, Mark A. Davison
  • Patent number: 10556497
    Abstract: A hybrid powertrain includes a traction battery and a controller. The controller is programmed to, responsive to a current vehicle speed exceeding a first threshold, reduce a parameter indicative of state of charge (SOC) of the battery by an offset amount that varies with an amount of predicted distance for which a predicted vehicle speed profile is less than a second threshold to prompt charging of the battery to increased SOC values.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: February 11, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Chen Zhang, Yanan Zhao, Mark Steven Yamazaki, Ming Lang Kuang, Mark Davison
  • Patent number: 10555769
    Abstract: The disclosure provides a method of manufacturing a flexible circuit electrode assembly and an apparatus manufactured by said method. According to the method, an electrically conductive sheet is laminated to an electrically insulative sheet. An electrode is formed on the electrically conductive sheet. An electrically insulative layer is formed on a tissue contacting surface of the electrode. The individual electrodes are separated from the laminated electrically insulative sheet and the electrically conductive sheet. In another method, a flexible circuit is vacuum formed to create a desired profile. The vacuum formed flexible circuit is trimmed. The trimmed vacuum formed flexible circuit is attached to a jaw member of a clamp jaw assembly.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: February 11, 2020
    Assignee: Ethicon LLC
    Inventors: Barry C. Worrell, David C. Yates, Joseph D. Dennis, Mark A. Davison, Geoffrey S. Strobl
  • Patent number: 10549745
    Abstract: A hybrid electric vehicle having a powertrain including an engine and an electric machine, and controllers configured to derate powertrain output torque below a nominal maximum to a fault-torque limit, in response to a vehicle fault or issue. The vehicle and controllers are also configured to transiently increase powertrain torque output above the fault-torque limit in response to a torque demand that exceeds the limit, and which is needed to enable a predicted vehicle maneuver. The controller also establishes a predicted duration for the predicted interim vehicle maneuver and for override of the fault-torque limit and delivery of the additional torque from the torque-demand signal and other signals. The predicted duration includes a time span to maneuver through roadway obstacles and traffic, but does not exceed a limited operation time or a limited power output established by the controller from the vehicle issue or fault identified by the fault signal.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 4, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Chen Zhang, Mark Steven Yamazaki, Mark Davison
  • Publication number: 20200030021
    Abstract: Aspects of the present disclosure are presented for a medical instrument configured to adjust the power level for sealing procedures to account for changes in tissue impedance levels over time. In some aspects, a medical instrument may be configured to apply power according to a power algorithm to seal tissue by applying a gradually lower amount of power over to time as the tissue impedance level begins to rise out of the “bathtub region,” which is the time period during energy application where the tissue impedance is low enough for electrosurgical energy to be effective for sealing tissue. In some aspects, the power is then cut once the tissue impedance level exceeds the “bathtub region.” By gradually reducing the power, a balance is achieved between still applying an effective level of power for sealing and prolonging the time in which the tissue impedance remains in the “bathtub region.
    Type: Application
    Filed: August 5, 2019
    Publication date: January 30, 2020
    Inventors: David C. Yates, Amy M. Krumm, Mark A. Davison
  • Publication number: 20190389261
    Abstract: A vehicle system comprises a hitch ball mounted on a vehicle and a controller configured to identify a coupler position of a trailer. The controller is further configured to control motion of the vehicle aligning the hitch ball with the coupler position and monitor a height of the coupler relative to the hitch ball. In response to the coupler height being less than a height of the hitch ball, the controller is configured to stop the motion of the vehicle.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 26, 2019
    Applicant: Ford Global Technologies, LLC
    Inventors: Chen Zhang, Mark Davison, Yu Ling
  • Patent number: 10441345
    Abstract: A generator is disclosed to generate a drive signal to a surgical device. The generator includes an ultrasonic generator module to generate a first drive signal to drive an ultrasonic device, an electrosurgery/radio frequency (RF) generator module to generate a second drive signal to drive an electrosurgical device, and a foot switch coupled to each of the ultrasonic generator module and the electrosurgery/RF generator module. The foot switch is configured to operate in a first mode when the ultrasonic device is coupled to the ultrasonic generator module and the foot switch is configured to operate in a second mode when the electrosurgical device is coupled to the electrosurgery/RF generator module. The generator further includes a user interface to provide feedback in accordance with the operation of any one of the ultrasonic device and the electrosurgical device in accordance with a predetermined algorithm.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: October 15, 2019
    Assignee: Ethicon LLC
    Inventors: Jeffrey L. Aldridge, Robert A. Kemerling, Mark E. Tebbe, Christopher A. Papa, Daniel W. Price, Eitan T. Wiener, Jeffrey D. Messerly, David C. Yates, Mark A. Davison, Scott B. Killinger, Gavin M. Monson, Robert J. Laird, Matthew C. Miller
  • Patent number: 10427656
    Abstract: A computer is programmed to determine a target brake torque that is below a preset holding brake torque and at least high enough to hold a vehicle at standstill; and upon detecting that a brake of the vehicle is applied and a speed of the vehicle is below a threshold, monotonically reduce a brake torque of the brake so that the brake torque reaches the target brake torque when the speed reaches substantially zero.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: October 1, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Chen Zhang, Li Xu, Yanan Zhao, George Edmund Walley, III, Mark Davison
  • Patent number: 10376305
    Abstract: Aspects of the present disclosure are presented for a medical instrument configured to adjust the power level for sealing procedures to account for changes in tissue impedance levels over time. In some aspects, a medical instrument may be configured to apply power according to a power algorithm to seal tissue by applying a gradually lower amount of power over time as the tissue impedance level begins to rise out of the “bathtub region,” which is the time period during energy application where the tissue impedance is low enough for electrosurgical energy to be effective for sealing tissue. In some aspects, the power is then cut once the tissue impedance level exceeds the “bathtub region.” By gradually reducing the power, a balance is achieved between still applying an effective level of power for sealing and prolonging the time in which the tissue impedance remains in the “bathtub region.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: August 13, 2019
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Amy M. Krumm, Mark A. Davison
  • Patent number: 10349999
    Abstract: Various embodiments are directed to methods for providing an electrosurgical signal to a patient using an electrosurgical system. A method may, for a first application period, apply the electrosurgical signal to first and second electrodes according to a first mode. In the first mode, the electrosurgical signal is limited to a first maximum power when the impedance between the first and second electrodes exceeds a first mode threshold. The method may also, for a second application period after the first application period, apply the electrosurgical signal according to a second mode. In the second mode, the electrosurgical signal is limited to a second mode maximum power when the impedance between the first and second electrodes exceeds a second mode threshold. The second maximum power may be greater than the first maximum power.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: July 16, 2019
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Jeffrey D. Messerly, Mark A. Davison
  • Publication number: 20190170459
    Abstract: The present disclosure relates to a modular heat exchange tower that has a plurality of air inlet modules each having stanchion disposed therein. The modular heat exchange tower also includes a series of heat exchange modules positioned above the air inlet modules along with a series of plenum modules position above said heat exchange modules.
    Type: Application
    Filed: November 28, 2018
    Publication date: June 6, 2019
    Inventors: Eric RASMUSSEN, Mark DAVISON, Dustin JENKINS, John DALTON
  • Patent number: 10272737
    Abstract: A motor vehicle comprises an HVAC system including a climate control circuit coupled to onboard sensors, a human-machine interface, and climate actuators. The actuators are responsive to respective command parameters generated by the control circuit in response to the sensors and the human-machine interface. A wireless communication system transmits vehicle HVAC data to and receives crowd data from a remote server. The control circuit initiates a request for crowd data via the communication system to the remote server, wherein the request includes peer parameters for identifying a vehicle environment. The control circuit receives a response via the communication system from the remote server. The response comprises crowd data and at least one weight indicating a confidence level associated with the crowd data. The control circuit generates at least one command parameter using a set of fuzzy rules responsive to the crowd data and the weight from the response.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 30, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Joseph Stanek, John A. Lockwood, Mark Davison, Jeffrey A. Palic, Lisa Scott
  • Publication number: 20190099212
    Abstract: An end effector of an electrosurgical device may include a discharge port, an aspiration port, two electrodes, and a diverter formed from a porous material. The diverter includes a matrix having voids to receive fluid from the discharge port. A releasable diverter assembly may include an assembly body configured to receive a pair of electrodes and a diverter composed of a porous material. A shaft assembly of an electrosurgical device may include two electrodes and two fluid cannulae. Each cannula may be disposed proximate to a surface of each of the electrodes. An end effector of an electrosurgical device may include a fluid discharge port, two electrodes, and a diverter disposed therebetween. A proximal edge of the diverter may form a secant line with respect to the end of the discharge port so that fluid emitted by the discharge port is disposed on a surface of the diverter.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Mark A. Davison, Craig T. Davis, Jeffrey W. Bullock, Mark E. Tebbe, Shan Wan, Jeffrey L. Aldridge, Ryan M. Asher, Kristen G. Denzinger, Monica L. Rivard, Kevin A. Bash, Eric M. Roberson
  • Publication number: 20190059987
    Abstract: Various exemplary methods, systems, and devices for controlling electrosurgical tools are provided.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 28, 2019
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Chester O. Baxter, III, Mark A. Davison, Benjamin D. Dickerson, David C. Yates
  • Publication number: 20190059986
    Abstract: Various exemplary methods, systems, and devices for controlling electrosurgical tools are provided.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 28, 2019
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Chester O. Baxter, III, Mark A. Davison, Benjamin D. Dickerson
  • Publication number: 20190059988
    Abstract: An apparatus includes a shaft assembly and an end effector. The shaft assembly includes an outer sheath, at least one irrigation conduit, and at least one suction conduit. The end effector includes a first electrode, a second electrode, and a web. The electrodes extend distally relative to a distal end of the outer sheath. The electrodes are operable to apply bipolar RF energy to tissue. The web extends laterally between the first and second electrodes. The web is positioned distal to the distal end of the outer sheath.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Mark A. Davison, Mark E. Tebbe, Kristen G. Denzinger, Ryan M. Asher, Craig T. Davis, Kevin Bash, Eric Roberson, John E. Brady, Jeffrey A. Bullock, Jeffrey L. Aldridge, Monica L. Zeckel, Shan Wan, Kristen L. D'Uva
  • Patent number: 10194972
    Abstract: Various embodiments are directed to systems and methods for providing a drive signal to a surgical device for treating tissue. A surgical generator may deliver the drive signal according to a first composite load curve. The surgical generator may receive a first tissue measurement indicating a property of the tissue at a first time during the delivery of the drive signal, receive a second tissue measurement indicating the property of the tissue at a second time during the delivery of the drive signal after the first time, and based on the first and second tissue measurements, determine a difference in the property of the tissue between the first time and the second time. When the difference in the property of the tissue exceeds a difference threshold, the generator may deliver the drive signal according to a second composite load curve that is more aggressive than the first composite load curve.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: February 5, 2019
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Eitan T. Wiener, Mark A. Davison
  • Patent number: 10189468
    Abstract: A vehicle comprises a hybrid powertrain includes an electric machine coupled between an automatic gearbox and an engine. The vehicle includes paddle shifters configured to output a driver requested gear change. The hybrid powertrain is configured to selectively operate in an economy mode that optimizes fuel economy. While operating in the economy mode, a controller may selectively inhibit the driver requested gear change when the change may negatively impact fuel economy. In the economy mode, the driver requested gear change may be inhibited during a demand for braking. If the driver requested gear change is a downshift request, the downshift is inhibited and simulated using electric machine torque.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: January 29, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Bernard D. Nefcy, Ming Lang Kuang, Brian Thomas Soo, Stuart N. Ford, Mark Davison, Matthew Joseph Meinhart
  • Publication number: 20190000532
    Abstract: An electrosurgical device is disclosed. The electrosurgical device includes a cartridge configured to be disposed within an elongate channel of an end effector. The cartridge includes an electrode having a plurality of electrode portions disposed along a longitudinal axis of the cartridge. The electrode is configured to electrically couple to a generator. Each electrode portion of the plurality of electrode portions is configured to deliver an amount of energy to a tissue placed proximate thereto. An amount of energy delivered by a first electrode portion of the plurality of electrode portions differs from an amount of energy delivered by a second electrode portion of the plurality of electrode portions.
    Type: Application
    Filed: June 28, 2017
    Publication date: January 3, 2019
    Inventors: Frederick E. Shelton, IV, David C. Yates, Mark A. Davison, Jason L. Harris
  • Publication number: 20190000533
    Abstract: A surgical instrument is disclosed. The surgical instrument includes a circuit configured to deliver RF energy to a cartridge disposed in an end effector configured to receive the cartridge, a closure mechanism configured to transition the end effector between an open position and a closed position, a display, and a control circuit operably coupled to the display. The control circuit configured to determine an amount of RF energy delivered to a tissue through the cartridge, display the amount of RF energy on the display, determine a position of the closure mechanism, and display the position of the closure mechanism on the display.
    Type: Application
    Filed: June 28, 2017
    Publication date: January 3, 2019
    Inventors: Jeffrey D. Messerly, David C. Yates, Mark A. Davison, Jason L. Harris, Frederick E. Shelton, IV