Patents by Inventor Mark Alan Duchaineau

Mark Alan Duchaineau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240007600
    Abstract: Methods, systems, devices, and tangible non-transitory computer readable media for haze reduction are provided. The disclosed technology can include generating feature vectors based on an input image including points. The feature vectors can correspond to feature windows associated with features of different portions of the points. Based on the feature vectors and a machine-learned model, a haze thickness map can be generated. The haze thickness map can be associated with an estimate of haze thickness at each of the points. Further, the machine-learned model can estimate haze thickness associated with the features. A refined haze thickness map can be generated based on the haze thickness map and a guided filter. A dehazed image can be generated based on application of the refined haze thickness map to the input image. Furthermore, a color corrected dehazed image can be generated based on performance of color correction operations on the dehazed image.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Xiang Zhu, Mark Alan Duchaineau, Yuxin Hu
  • Patent number: 11800076
    Abstract: Methods, systems, devices, and tangible non-transitory computer readable media for haze reduction are provided. The disclosed technology can include generating feature vectors based on an input image including points. The feature vectors can correspond to feature windows associated with features of different portions of the points. Based on the feature vectors and a machine-learned model, a haze thickness map can be generated. The haze thickness map can be associated with an estimate of haze thickness at each of the points. Further, the machine-learned model can estimate haze thickness associated with the features. A refined haze thickness map can be generated based on the haze thickness map and a guided filter. A dehazed image can be generated based on application of the refined haze thickness map to the input image. Furthermore, a color corrected dehazed image can be generated based on performance of color correction operations on the dehazed image.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: October 24, 2023
    Assignee: GOOGLE LLC
    Inventors: Xiang Zhu, Yuxin Hu, Mark Alan Duchaineau
  • Publication number: 20220321852
    Abstract: Methods, systems, devices, and tangible non-transitory computer readable media for haze reduction are provided. The disclosed technology can include generating feature vectors based on an input image including points. The feature vectors can correspond to feature windows associated with features of different portions of the points. Based on the feature vectors and a machine-learned model, a haze thickness map can be generated. The haze thickness map can be associated with an estimate of haze thickness at each of the points. Further, the machine-learned model can estimate haze thickness associated with the features. A refined haze thickness map can be generated based on the haze thickness map and a guided filter. A dehazed image can be generated based on application of the refined haze thickness map to the input image. Furthermore, a color corrected dehazed image can be generated based on performance of color correction operations on the dehazed image.
    Type: Application
    Filed: December 20, 2019
    Publication date: October 6, 2022
    Inventors: Xiang Zhu, Yuxin Hu, Mark Alan Duchaineau
  • Patent number: 9076032
    Abstract: Aspects of the disclosure relate generally to determine specularity of an object. As an example an object or area of geometry may be selected. A set of images that include the area of geometry may be captured. This set of images may be filtered to remove images that do not show the area of geometry well, such as if the area is in a shadow or occluded by another object. A set of intensity values for the area are determined for each image. A set of angle values for each image is determined based on at least a direction of a camera that captured the particular image when the particular image was captured. The set of average intensities and the set of angle values are paired and fit to a curve. The specularity of the area may then be classified based on at least the fit.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 7, 2015
    Assignee: Google Inc.
    Inventors: Agis Iakovos Mesolongitis, Mark Alan Duchaineau, Jonah Jones
  • Publication number: 20150170369
    Abstract: Aspects of the disclosure relate generally to determine specularity of an object. As an example an object or area of geometry may be selected. A set of images that include the area of geometry may be captured. This set of images may be filtered to remove images that do not show the area of geometry well, such as if the area is in a shadow or occluded by another object. A set of intensity values for the area are determined for each image. A set of angle values for each image is determined based on at least a direction of a camera that captured the particular image when the particular image was captured. The set of average intensities and the set of angle values are paired and fit to a curve. The specularity of the area may then be classified based on at least the fit.
    Type: Application
    Filed: June 30, 2014
    Publication date: June 18, 2015
    Inventors: Agis Iakovos Mesolongitis, Mark Alan Duchaineau, Jonah Jones
  • Patent number: 8805088
    Abstract: Aspects of the disclosure relate generally to determine specularity of an object. As an example an object or area of geometry may be selected. A set of images that include the area of geometry may be captured. This set of images may be filtered to remove images that do not show the area of geometry well, such as if the area is in a shadow or occluded by another object. A set of intensity values for the area are determined for each image. A set of angle values for each image is determined based on at least a direction of a camera that captured the particular image when the particular image was captured. The set of average intensities and the set of angle values are paired and fit to a curve. The specularity of the area may then be classified based on at least the fit.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: August 12, 2014
    Assignee: Google Inc.
    Inventors: Agis Iakovos Mesolongitis, Mark Alan Duchaineau, Jonah Jones