Patents by Inventor Mark Alan Frontera

Mark Alan Frontera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10744562
    Abstract: Adaptively forming a three-dimensional component may include providing a plurality of electron beam sources, and simultaneously controlling the plurality of electron beam sources to direct a plurality of electron beams onto a plurality of deposited layers of metallic powder to sequentially consolidate patterned portions of the plurality of deposited metallic powder layers to adaptively form the three-dimensional component.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: August 18, 2020
    Assignee: General Electric Company
    Inventors: Mark Alan Frontera, Vasile Bogdan Neculaes, James William Sears, Peter Andras Zavodszky
  • Patent number: 10353084
    Abstract: Methods and systems are provided for cooling systems for imaging systems. In one embodiment, a manifold assembly for an imaging system comprises: an intake manifold and a return manifold formed by a plurality of unitary sections, the intake manifold and return manifold positioned adjacent to each other and separated by a shared wall; and a plurality of nozzles, with each nozzle of the plurality of nozzles formed by a corresponding section of the plurality of unitary sections. In this way, an assembly difficulty, expense, and/or manufacturing time of the manifold assembly may be decreased.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: July 16, 2019
    Assignee: General Electric Company
    Inventors: Grant Richard Wagner, Adam Clark Nathan, Matthew Jason Evangelist, Chad Allan Smith, Mark Alan Frontera
  • Patent number: 10290460
    Abstract: An X-ray tube is provided. The X-ray tube includes an electron beam source including a cathode configured to emit an electron beam. The X-ray tube also includes an anode assembly including an anode configured to receive the electron beam and to emit X-rays when impacted by the electron beam. The X-ray tube further includes a gridding electrode disposed about a path of the electron beam between the electron beam source and the anode assembly. The gridding electrode, when powered at a specific level, is configured to grid the electron beam in synchronization with planned transitions during a dynamic focal spot mode.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: May 14, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Michael John Utschig, Uwe Wiedmann, Bruno Kristiaan Bernard De Man, Sergio Lemaitre, Mark Alan Frontera, Antonio Caiafa, Jiahua Fan, Adam Budde
  • Patent number: 9953797
    Abstract: A flat emitter configured for use in an X-ray tube is presented. The X-ray tube includes a first conductive section including a first terminal. Further, the X-ray tube includes a second conductive section including a second terminal. Also, the X-ray tube includes a third conductive section disposed between the first conductive section and the second conductive section, wherein the third conductive section is configured to emit electrons toward a determined focal spot, and wherein the third conductive section includes a plurality of slits subdividing the third conductive section into a winding track coupled to the first conductive section and the second conductive section, wherein at least two of the plurality of slits are interwound spirally to compose the winding track, and wherein the winding track is configured to expand and contract based on heat provided to the third conductive section.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: April 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Xi Zhang, Mark Alan Frontera, Sergio Lemaitre, John Scott Price, Uwe Wiedmann
  • Publication number: 20180068823
    Abstract: An X-ray tube is provided. The X-ray tube includes an electron beam source including a cathode configured to emit an electron beam. The X-ray tube also includes an anode assembly including an anode configured to receive the electron beam and to emit X-rays when impacted by the electron beam. The X-ray tube further includes a gridding electrode disposed about a path of the electron beam between the electron beam source and the anode assembly. The gridding electrode, when powered at a specific level, is configured to grid the electron beam in synchronization with planned transitions during a dynamic focal spot mode.
    Type: Application
    Filed: September 7, 2016
    Publication date: March 8, 2018
    Inventors: Michael John Utschig, Uwe Wiedmann, Bruno Kristiaan Bernard De Man, Sergio Lemaitre, Mark Alan Frontera, Antonio Caiafa, Jiahua Fan, Adam Budde
  • Publication number: 20170215818
    Abstract: A high-resolution imaging approach is described. The described approach includes use of a small focal spot size and positioning of the patient offset from the center of the imaging volume. The off-center displacement is combined with a small focal spot size and with modified image reconstruction methods to provide high intrinsic spatial resolution without hardware changes to the imaging system.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 3, 2017
    Inventors: Bruno Kristiaan Bernard De Man, Lin Fu, Mark Alan Frontera
  • Publication number: 20170210073
    Abstract: Adaptively forming a three-dimensional component may include providing a plurality of electron beam sources, and simultaneously controlling the plurality of electron beam sources to direct a plurality of electron beams onto a plurality of deposited layers of metallic powder to sequentially consolidate patterned portions of the plurality of deposited metallic powder layers to adaptively form the three-dimensional component.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 27, 2017
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Mark Alan FRONTERA, Vasile Bogdan NECULAES, James William SEARS, Peter Andras ZAVODSZKY
  • Patent number: 9715989
    Abstract: In one embodiment, an X-ray source target is provided that includes two or more layers of X-ray generating material at different depths within a source target for an electron beam. In one such embodiment the X-ray generating material in each layer does not extend fully across an underlying substrate surface.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: July 25, 2017
    Assignee: General Electric Company
    Inventors: George Theodore Dalakos, Mark Alan Frontera, Vance Scott Robinson
  • Patent number: 9711320
    Abstract: An emitter device having an emission surface includes a plurality of ligaments configured to emit electrons in response to an applied electric field resulting from an applied electrical voltage. Further, the emitter device includes a plurality of slots configured to provide physical separation between two or more adjacently disposed ligaments of the plurality of ligaments, where one or more slots of the plurality of slots define an electrical path. Moreover, the emitter device includes a low work function layer disposed on at least a portion of a ligament of the plurality of ligaments.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: July 18, 2017
    Assignee: General Electric Company
    Inventors: Yun Zou, Carey Shawn Rogers, Sergio Lemaitre, Mark Alan Frontera, Xi Zhang
  • Patent number: 9646801
    Abstract: In various embodiments, a multi-layer X-ray source target is provided having two or more layers of target material at different depths and different thicknesses. In one such embodiment the X-ray generating layers increase in thickness in relationship to their depth relative to the electron beam facing surface of the source target, such that X-ray generating layer further from this surface are thick than X-ray generating layers closer to the electron beam facing surface.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: May 9, 2017
    Assignee: General Electric Company
    Inventors: George Theodore Dalakos, Mark Alan Frontera, Vance Scott Robinson, William Robert Ross, Xi Zhang
  • Patent number: 9615803
    Abstract: In accordance with one aspect of the present system, an X-ray detector of an X-ray imaging system includes a communication module configured to receive a pre-shot image from a detection circuitry and receive one or more pre-shot parameters from a source controller of the X-ray imaging system. The X-ray detector further includes an analysis module configured to determine one or more image characteristics of the pre-shot image. The X-ray detector further includes a determination module configured to calculate one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics. The determination module is further configured to send the one or more main-shot parameters to the source controller of the X-ray imaging system.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: April 11, 2017
    Assignee: General Electric Company
    Inventors: Yun Zou, Rowland Frederick Saunders, Scott Stephen Zelakiewicz, Floribertus P. M. Heukensfeldt Jansen, Mark Alan Frontera, Uwe Wiedmann, Vivek Walimbe
  • Publication number: 20170092456
    Abstract: A flat emitter configured for use in an X-ray tube is presented. The X-ray tube includes a first conductive section including a first terminal. Further, the X-ray tube includes a second conductive section including a second terminal. Also, the X-ray tube includes a third conductive section disposed between the first conductive section and the second conductive section, wherein the third conductive section is configured to emit electrons toward a determined focal spot, and wherein the third conductive section includes a plurality of slits subdividing the third conductive section into a winding track coupled to the first conductive section and the second conductive section, wherein at least two of the plurality of slits are interwound spirally to compose the winding track, and wherein the winding track is configured to expand and contract based on heat provided to the third conductive section.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 30, 2017
    Inventors: Xi Zhang, Mark Alan Frontera, Sergio Lemaitre, John Scott Price, Uwe Wiedmann
  • Patent number: 9484179
    Abstract: An X-ray tube includes an emitter, and an electrode assembly. The emitter is configured to emit an electron beam toward a target. The electrode assembly includes at least one electrode having a bias voltage with respect to the emitter. At least one electrode of the electrode assembly is a segmented electrode including a plurality of segments. The plurality of segments includes a first member and a second member. The first member is configured to have a first bias voltage and the second member is configured to have a second bias voltage that is different from the first bias voltage.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 1, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Mark Alan Frontera, Peter Andras Zavodszky
  • Publication number: 20160300686
    Abstract: In various embodiments, a multi-layer X-ray source target is provided having two or more layers of target material at different depths and different thicknesses. In one such embodiment the X-ray generating layers increase in thickness in relationship to their depth relative to the electron beam facing surface of the source target, such that X-ray generating layer further from this surface are thick than X-ray generating layers closer to the electron beam facing surface.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 13, 2016
    Inventors: George Theodore Dalakos, Mark Alan Frontera, Vance Scott Robinson, William Robert Ross, Xi Zhang
  • Publication number: 20160300685
    Abstract: In one embodiment, an X-ray source target is provided that includes two or more layers of X-ray generating material at different depths within a source target for an electron beam. In one such embodiment the X-ray generating material in each layer does not extend fully across an underlying substrate surface.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 13, 2016
    Inventors: George Theodore Dalakos, Mark Alan Frontera, Vance Scott Robinson
  • Patent number: 9443691
    Abstract: Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray emitting devices. In certain embodiments the emitter includes features that prevent, limit, or control deflection of the electron emitter at operating temperatures. In this manner, the electron emitter may be kept substantially flat or at a desired curvature during operation.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: September 13, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Vance Scott Robinson, Carey Shawn Rogers, Sergio Lemaitre, Mark Alan Frontera, Sergiy Zalyubovskiy, Xi Zhang
  • Publication number: 20160141062
    Abstract: In accordance with one exemplary embodiment, a target body of a target system for an isotope production system is disclosed. The target body includes a target chamber having a first chamber with a first surface area and a second chamber with a second surface area greater than the first surface area. The first chamber is configured to hold a liquid target medium for bombardment by a charged particle beam. A component is coupled to the target body and configured to generate a radioactivity.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 19, 2016
    Inventors: Xi Zhang, Mark Alan Frontera, Peter Andras Zavodszky, Tomas Ake Eriksson
  • Patent number: 9251987
    Abstract: Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray devices. In one embodiment, the emitter features a round emission area capable of emitting electrons when heated, wherein the round emission area comprises at least one of a gap, a channel, or a combination thereof that separates a first portion of the round emission area from a second portion of the round emission area and permits thermal expansion of the first portion and the second portion within the at least one gap or channel without permitting the first portion and the second portion to touch one another. The two electrically conductive legs coupled to the surface at respective locations outside the round emission area and that are capable of supplying current to the round emission area.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Xi Zhang, Carey Shawn Rogers, Ethan James Westcot, Mark Alan Frontera, Vance Scott Robinson, Yun Zou
  • Patent number: 9224572
    Abstract: An X-ray tube assembly is provided including an emitter configured to emit an electron beam, an emitter focusing electrode, an extraction electrode, and a downstream focusing electrode. The emitter focusing electrode is disposed proximate to the emitter and outward of the emitter in an axial direction. The extraction electrode is disposed downstream of the emitter and the emitter focusing electrode. The extraction electrode has a negative bias voltage setting at which the extraction electrode has a negative bias voltage with respect to the emitter. The downstream focusing electrode is disposed downstream of the extraction electrode, and has a positive bias voltage with respect to the emitter. When the extraction electrode is at the negative bias voltage setting, the electron beam is emitted from an emission area that is smaller than a maximum emission area from which electrons may be emitted.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: December 29, 2015
    Assignee: General Electric Company
    Inventors: Mark Alan Frontera, John Scott Price, Sergio Lemaitre, Yun Zou, Peter Andras Zavodszky
  • Publication number: 20150359498
    Abstract: In accordance with one aspect of the present system, an X-ray detector of an X-ray imaging system includes a communication module configured to receive a pre-shot image from a detection circuitry and receive one or more pre-shot parameters from a source controller of the X-ray imaging system. The X-ray detector further includes an analysis module configured to determine one or more image characteristics of the pre-shot image. The X-ray detector further includes a determination module configured to calculate one or more main-shot parameters based on the one or more pre-shot parameters and the one or more image characteristics. The determination module is further configured to send the one or more main-shot parameters to the source controller of the X-ray imaging system.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 17, 2015
    Inventors: Yun Zou, Rowland Frederick Saunders, Scott Stephen Zelakiewicz, Floribertus P. M. Heukensfeldt Jansen, Mark Alan Frontera, Uwe Wiedmann, Vivek Walimbe