Patents by Inventor Mark Andrew Borden

Mark Andrew Borden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130251633
    Abstract: Microbubbles can be injected into the bloodstream of a patient, for example, a cancer patient undergoing a treatment specifically targeting a biological process in a tumor. The injected microbubbles can act as vascular contrast agents, which can be detected in vivo using high-frequency ultrasound imaging. The microbubbles can have a surface chemistry that allows them to bind to molecular targets in the tumor vasculature. After injection, the microbubbles can selectively adhere to endothelia expressing a target receptor. The selective adhesion can be used to quantify the tumor vasculature in vivo. By imaging the adhered microbubbles with ultrasound, an indication of how tumor vasculature is affected by a specific cancer treatment can be obtained. Such techniques can be used in a clinical setting for rapid determination of anti-cancer treatment efficacy for individual patients.
    Type: Application
    Filed: August 5, 2011
    Publication date: September 26, 2013
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Mark Andrew Borden, Jessica Kandel, Shashank Ramesh Sirsi, Darrell Yamashiro
  • Publication number: 20130216593
    Abstract: Thiolated polyethylenimine (PEI) polymers can be covalently attached to lipid shell microbubbles. The PEI polymer can be modified with polyethylene glycol (PEG) chains to improve biocompatibility. The covalent attachment of the PEI polymer to the microbubble shell can result from a bond between a free sulfhydryl group (SH) of the thiolated PEI and a free maleimide group on the microbubble shell. DNA can be electrostatically bound to the PEI polymers to form polyplexes. A plurality of the polyplex-microbubble hybrids can be injected into a patient and can be imaged via ultrasound. While circulating in the bloodstream, and in particular, within a region of interest, high-pressure, low-frequency acoustic energy can be applied, thereby causing destruction by cavitation. Such cavitation can transiently increase the permeability of the endothelial vasculature thereby allowing plasmid DNA of the polyplexes carried by the microbubbles to be delivered to targeted cells.
    Type: Application
    Filed: August 26, 2011
    Publication date: August 22, 2013
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Mark Andrew Borden, Shashank Ramesh Sirsi
  • Patent number: 8481077
    Abstract: Compositions containing a carrier and microbubbles encapsulating one or more gases, preferably oxygen, and methods for making and using the compositions are described herein. The microbubbles contain a lipid envelope. The compositions may be administered to a patient to quickly deliver large amounts of oxygen to the patient's blood supply or directly to a tissue in need of oxygen. The compositions may be administered via injection or as a continuous infusion. The compositions contain a concentrated microbubble suspension, where the suspension contains at least 40 mL oxygen/dL suspension. The microbubbles are preferably less than 20 microns in diameter, more preferably less than 15 microns in diameter. The microbubbles described herein may be administered to a patient in an effective amount to increase in oxygen concentration in the patient's blood, and/or one or more tissues or organs.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: July 9, 2013
    Assignees: The Trustees of Columbia University in the City of New York, Children's Medical Center Corporation
    Inventors: John Kheir, Mark Andrew Borden, Francis X. McGowan
  • Publication number: 20120156300
    Abstract: Compositions containing a carrier and microbubbles encapsulating one or more gases, preferably oxygen, and methods for making and using the compositions are described herein. The microbubbles contain a lipid envelope. The compositions may be administered to a patient to quickly deliver large amounts of oxygen to the patient's blood supply or directly to a tissue in need of oxygen. The compositions may be administered via injection or as a continuous infusion. The compositions contain a concentrated microbubble suspension, where the suspension contains at least 40 mL oxygen/dL suspension. The microbubbles are preferably less than 20 microns in diameter, more preferably less than 15 microns in diameter. The microbubbles described herein may be administered to a patient in an effective amount to increase in oxygen concentration in the patient's blood, and/or one or more tissues or organs.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 21, 2012
    Applicants: The Trustees of Columbia University
    Inventors: John Kheir, Mark Andrew Borden, Francis X. McGowan
  • Publication number: 20090191244
    Abstract: Compositions containing a carrier and microbubles encapsulating one or more gases, preferably oxygen, and methods for making and using the compositions are described herein. The microbubbles contain a lipid envelope formed of at least one base lipid and at least one emulsifying agent. The compositions may be administered to a patient to quickly deliver large amounts of oxygen to the patient's blood supply or directly to a tissue in need of oxygen. The compositions may be administered via injection or as a continuous infusion. The compositions contain a concentrated microbubble suspension, where the suspension contains at least 40 mL oxygen/dL suspension. The microbubbles are preferably less than 20 microns in diameter, more preferably less than 15 microns in diameter. The microbubbles described herein may be administered to a patient in an effective amount to increase in oxygen concentration in the patient's blood, and/or one or more tissues or organs.
    Type: Application
    Filed: September 29, 2008
    Publication date: July 30, 2009
    Applicants: Children's Medical Center Corporation, The Trustees of Columbia University in the City of New York
    Inventors: John Kheir, Mark Andrew Borden, Francis X. McGowan