Patents by Inventor Mark Aron Labow

Mark Aron Labow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10273482
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression of phosphatidylinositol 4-kinase (PI4K), in particular human phosphatidylinositol 4-kinase, catalytic, beta polypeptide (PIK4CB) or human phosphatidylinositol 4-kinase, catalytic, alpha polypeptide (PIK4CA), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the PIK4CB or PIK4CA target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: April 30, 2019
    Assignee: Arrowhead Pharmaceuticals, Inc.
    Inventors: Mark Aron Labow, Larry Alexander Gaither, Jason Borawski
  • Publication number: 20170204417
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression of phosphatidylinositol 4-kinase (PI4K), in particular human phosphatidylinositol 4-kinase, catalytic, beta polypeptide (PIK4CB) or human phosphatidylinositol 4-kinase, catalytic, alpha polypeptide (PIK4CA), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the PIK4CB or PIK4CA target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Application
    Filed: March 28, 2017
    Publication date: July 20, 2017
    Inventors: Mark Aron Labow, Larry Alexander Gaither, Jason Borawski
  • Publication number: 20150337317
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression of phosphatidylinositol 4-kinase (PI4K), in particular human phosphatidylinositol 4-kinase, catalytic, beta polypeptide (PIK4CB) or human phosphatidylinositol 4-kinase, catalytic, alpha polypeptide (PIK4CA), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the PIK4CB or PIK4CA target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 26, 2015
    Inventors: Mark Aron Labow, Larry Alexander Gaither, Jason Borawski
  • Patent number: 9133462
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression of phosphatidylinositol 4-kinase (PI4K), in particular human phosphatidylinositol 4-kinase, catalytic, beta polypeptide (PIK4CB) or human phosphatidylinositol 4-kinase, catalytic, alpha polypeptide (PIK4CA), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the PIK4CB or PIK4CA target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 15, 2015
    Assignee: Arrowhead Research Corporation
    Inventors: Mark Aron Labow, Larry Alexander Gaither, Jason Borawski
  • Publication number: 20140057965
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression of phosphatidylinositol 4-kinase (PI4K), in particular human phosphatidylinositol 4-kinase, catalytic, beta polypeptide (PIK4CB) or human phosphatidylinositol 4-kinase, catalytic, alpha polypeptide (PIK4CA), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the PIK4CB or PIK4CA target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicant: NOVARTIS AG
    Inventors: Mark Aron LABOW, Larry Alexander GAITHER, Jason BORAWSKI
  • Patent number: 8603995
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression of phosphatidylinositol 4-kinase (PI4K), in particular human phosphatidylinositol 4-kinase, catalytic, beta polypeptide (PIK4CB) or human phosphatidylinositol 4-kinase, catalytic, alpha polypeptide (PIK4CA), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the PIK4CB or PIK4CA target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: December 10, 2013
    Assignee: Novartis AG
    Inventors: Mark Aron Labow, Larry Alexander Gaither, Jason Borawski
  • Publication number: 20120129913
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression of phosphatidylinositol 4-kinase (PI4K), in particular human phosphatidylinositol 4-kinase, catalytic, beta polypeptide (PIK4CB) or human phosphatidylinositol 4-kinase, catalytic, alpha polypeptide (PIK4CA), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the PIK4CB or PIK4CA target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 24, 2012
    Applicant: NOVARTIS AG
    Inventors: Mark Aron LABOW, Larry Alexander GAITHER, Jason BORAWSKI
  • Publication number: 20100316573
    Abstract: A method to predict which patients will respond to a IAP inhibiting compound comprising: a) administering an IAP inhibitor compound to a patient, and b) measuring TNF-? or IL-? levels.
    Type: Application
    Filed: October 17, 2007
    Publication date: December 16, 2010
    Inventors: Larry Alexander Gaither, Vadim Iourgenko, Mark Aron Labow, Dale Alan Porter, Christopher Sean Straub, Yao Yao, Leigh Zawel
  • Publication number: 20100184823
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression of phosphatidylinositol 4-kinase (PI4K), in particular human phosphatidylinositol 4-kinase, catalytic, beta polypeptide (PIK4CB) or human phosphatidylinositol 4-kinase, catalytic, alpha polypeptide (PIK4CA), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the PIK4CB or PIK4CA target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Application
    Filed: July 4, 2008
    Publication date: July 22, 2010
    Inventors: Mark Aron Labow, Larry Alexander Gaither, Jason Borawski
  • Publication number: 20100183704
    Abstract: The invention relates to double-stranded ribonucleic acids (dsRNAs) targeting gene expression carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and their use for treating infection by positive stranded RNA viruses such as hepatitis C virus (HCV). Each dsRNA comprises an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the CAD target mRNA. A plurality of such dsRNA may be employed to provide therapeutic benefit. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier, and including a delivery modality such as fully encapsulated liposomes or lipid complexes.
    Type: Application
    Filed: September 18, 2009
    Publication date: July 22, 2010
    Inventors: Jason Borawski, Larry Alexander Gaither, Mark Aron Labow
  • Publication number: 20100183613
    Abstract: The present invention provides novel methods of reducing Flavivirus viral replication and/or infection, e.g., Dengue virus. The invention employs mevalonate decarboxylase (MVD) antagonists to inhibit the cholesterol biosynthesis pathway, thereby inhibiting viral replication/infection.
    Type: Application
    Filed: October 20, 2009
    Publication date: July 22, 2010
    Inventors: Jason BORAWSKI, Larry Alexander Gaither, Mark Aron Labow
  • Publication number: 20090202565
    Abstract: The present invention relates to a broad range of methods that utilize a transducer of regulated CREB (TORC)-related polynucleotide, polypeptide, or TORC-specific antibody. In addition the invention relates to TORC-related polynucleotide, polypeptide, or TORC-specific antibody compositions, including variants of TORC wild-type sequences. Exemplary methods include a method of stimulating a TORC related process in a cell as well as a method of inhibiting a TORC-related process in a cell, and a method of inhibiting TORC-related processes in a cell.
    Type: Application
    Filed: October 24, 2005
    Publication date: August 13, 2009
    Inventors: Mark Aron Labow, Mark Bittinger
  • Publication number: 20090136506
    Abstract: The invention discloses the first known function and biological activity of the hypothetical protein MGC14327, now designated cMAC, which is herein identified as an important controller of T-cell activation. It is contemplated herein that cMAC is a suitable drug target for the development of new therapeutics to treat cMAC-associated disorders. The invention relates to methods to treat said pathological conditions and to pharmaceutical compositions therefore. The pharmaceutical compositions comprise modulators with inhibitory or agonist effect on cMAC protein activity and/or cMAC gene expression. The invention also relates to methods to identify compounds with therapeutic usefulness to treat said pathological conditions, comprising identifying compounds that can inhibit or agonize cMAC protein activity and/or cMAC gene expression.
    Type: Application
    Filed: October 2, 2006
    Publication date: May 28, 2009
    Inventors: Mark Bittinger, Christine Chow, Danilo Guerini, Mark Aron Labow, Brian Jude Latario, Zhao-Hui Xiong
  • Publication number: 20030059889
    Abstract: Disclosed is a tumor necrosis factor receptor related protein 1 gene and gene product. In particular, the invention relates to a protein that is homologous to known tumor necrosis factor receptors, nucleic acid molecules that encode such a protein, antibodies that recognize the protein, methods for diagnosing and treating disorders, such as inflammatory disorders, immune disorders, neurodegenerative disorders, cell proliferative disorders, cell differentiation disorders, apoptotic disorders, gastrointestinal and reproductive tract disorders, bone disorders, blood disorders and viral disorders, methods of identifying molecules that bind and/or modulate the activity of TRP-1 protein, and methods of identifying molecules that bind to a nucleic acid encoding TRP-1 protein and/or modulate the transcription or translation of the nucleic acid encoding TRP-1 protein.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 27, 2003
    Inventors: Dale Lesley Bodian, Mark Aron Labow, Craig Stephen Mickanin