Patents by Inventor Mark Behlke

Mark Behlke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9873875
    Abstract: The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: January 23, 2018
    Assignees: CITY OF HOPE, INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: John J Rossi, Mark A. Behlke, Dongho Kim
  • Patent number: 9816091
    Abstract: Aspects of the present invention include the production and use of chemically modified RNAi agents (e.g., shRNAs) in gene silencing applications. The chemically modified RNAi agents disclosed herein have reduced immunostimulatory activity, increased serum stability, or both, as compared to a corresponding RNAi agent not having the chemical modification. Compositions containing chemically modified RNAi agents according to aspects of the present invention (including pharmaceutical compositions) and kits containing the same are also provided.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: November 14, 2017
    Assignee: SOMAGENICS, INC.
    Inventors: Qing Ge, Brian H. Johnston, Mark A. Behlke, Heini Ilves, Anne Dallas
  • Publication number: 20170224847
    Abstract: The present invention relates to a rapid detection of microbial-associated nuclease activity with chemically modified nuclease (e.g., ribonuclease) substrates, and probes and compositions useful in detection assays.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 10, 2017
    Applicants: UNIVERSITY OF IOWA RESEARCH FOUNDATION, INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: James O. McNamara, II, Katie R. Stockdale, Lingyan Huang, Alexander R. Horswill, Mark A. Behlke, Frank J. Hernandez
  • Publication number: 20170218438
    Abstract: The invention provides a more efficient and less error-prone method of performing LAMP. The invention also provides a method for utilizing an RNase H2-cleavable probe as a technique for generating signal from the reaction, potentially increasing the specificity of the signal generation.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 3, 2017
    Applicant: Integrated DNA Technologies, Inc.
    Inventors: Joseph Dobosy, Aurita Menezes, Caifu Chen, Mark Behlke
  • Publication number: 20170159054
    Abstract: The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 8, 2017
    Applicants: CITY OF HOPE, INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: John J. ROSSI, Mark A. BEHLKE, Dongho KIM
  • Patent number: 9603949
    Abstract: The present invention relates to a rapid detection of microbial-associated nuclease activity with chemically modified nuclease (e.g., ribonuclease) substrates, and probes and compositions useful in detection assays. Accordingly, in certain embodiments, the present invention provides a probe for detecting a microbial endonuclease comprising a substrate oligonucleotide of 2-30 nucleotides in length, a fluorescence-reporter group operably linked to the oligonucleotide, and a fluorescence-quencher group operably linked to the oligonucleotide. The fluorescence-reporter group and the fluorescence-quencher group are separated by at least one RNAse-cleavable residue, e.g., RNA base.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 28, 2017
    Assignees: University of Iowa Research Foundation, Integrated DNA Technologies, Inc.
    Inventors: James O. McNamara, II, Katie R. Stockdale, Lingyan Huang, Alexander R. Horswill, Mark A. Behlke, Frank J. Hernandez
  • Publication number: 20160376590
    Abstract: The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
    Type: Application
    Filed: September 8, 2016
    Publication date: December 29, 2016
    Applicants: CITY OF HOPE, INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: John J. ROSSI, Mark A. Behlke, Dongho Kim
  • Patent number: 9518262
    Abstract: The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: December 13, 2016
    Assignees: CITY OF HOPE, INTEGRATED DNA TECHNOLOGIES
    Inventors: John J. Rossi, Mark A. Behlke, Dongho Kim
  • Publication number: 20160340717
    Abstract: The present invention relates to a rapid detection of microbial-associated nuclease activity with chemically modified nuclease (e.g., endonuclease) substrates, and probes and compositions useful in detection assays.
    Type: Application
    Filed: February 9, 2015
    Publication date: November 24, 2016
    Applicant: UNIVERSITY OF IOWA RESEARCH FOUNDATION
    Inventors: James O. McNamara, Katie R. Flenker, Hyeon Kim, Alexander R. Horswill, Frank J. Hernandez, Mark Behlke, Lingyan Huang, Richard Owczarzy, Elliot Burghardt, Karen Clark
  • Publication number: 20160340676
    Abstract: The invention provides compositions and methods for selectively reducing the expression of a gene product from a desired target gene, as well as treating diseases caused by expression of the gene. The method involves introducing into the environment of a cell an amount of a double-stranded RNA (dsRNA) such that a sufficient portion of the dsRNA can enter the cytoplasm of the cell to cause a reduction in the expression of the target gene. The dsRNA has a first oligonucleotide sequence that is between 26 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of from about 19 to about 23 nucleotides is complementary to a nucleotide sequence of the RNA produced from the target gene.
    Type: Application
    Filed: June 13, 2016
    Publication date: November 24, 2016
    Applicants: CITY OF HOPE, INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: John J. ROSSI, Mark A. BEHLKE, Dongho KIM
  • Patent number: 9441227
    Abstract: The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: September 13, 2016
    Assignees: CITY OF HOPE, INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: John J. Rossi, Mark A. Behlke, Dongho Kim
  • Patent number: 9365849
    Abstract: The invention provides compositions and methods for selectively reducing the expression of a gene product from a desired target gene, as well as treating diseases caused by expression of the gene. The method involves introducing into the environment of a cell an amount of a double-stranded RNA (dsRNA) such that a sufficient portion of the dsRNA can enter the cytoplasm of the cell to cause a reduction in the expression of the target gene. The dsRNA has a first oligonucleotide sequence that is between 26 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of from about 19 to about 23 nucleotides is complementary to a nucleotide sequence of the RNA produced from the target gene.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: June 14, 2016
    Assignees: Integrated DNA Technologies, Inc., City of Hope
    Inventors: John J. Rossi, Mark A. Behlke, Dongho Kim
  • Patent number: 9234233
    Abstract: A composition comprising an oligonucleotide having the structure 5?-Y1-L1-X-L2-Y2-3?. Y1 comprises a sequence of one or more DNA or RNA nucleotides, including a first nucleotide N1 having a 3? phosphate covalently linked to L1. Y2 comprises a sequence of one or more DNA or RNA nucleotides, including a second nucleotide N2 having a 5? phosphate covalently linked to L2. L1 and L2 each independently are a direct bond or a C1-C7 alkyl, alkynyl, alkenyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, substituted aryl, cycloalkyl, alkylaryl, or alkoxyl group. X is R1 is a hydrogen or a C1-C8 alkyl. M is a label or ligand comprising a fused polycyclic aromatic moiety.
    Type: Grant
    Filed: December 20, 2014
    Date of Patent: January 12, 2016
    Assignee: Integrated DNA Technologies, Inc.
    Inventors: Scott Rose, Mark A. Behlke, Richard Owczarzy, Joseph A. Walder, Derek M. Thomas, Michael R. Marvin
  • Patent number: 9081737
    Abstract: The present invention provides methods that more accurately predict melting temperatures for duplex oligomers. The invented methods predict the Tm of chimeric duplexes containing various amounts of locked nucleic acid modifications in oligonucleotide strands.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: July 14, 2015
    Assignee: Integrated DNA Technologies, Inc.
    Inventors: Mark Behlke, Richard Owczarzy, Scott D. Rose, Andrey Tataurov, Yong You
  • Publication number: 20150152414
    Abstract: Aspects of the present invention include the production and use of chemically modified RNAi agents (e.g., shRNAs) in gene silencing applications. The chemically modified RNAi agents disclosed herein have reduced immunostimulatory activity, increased serum stability, or both, as compared to a corresponding RNAi agent not having the chemical modification. Compositions containing chemically modified RNAi agents according to aspects of the present invention (including pharmaceutical compositions) and kits containing the same are also provided.
    Type: Application
    Filed: October 3, 2014
    Publication date: June 4, 2015
    Inventors: Qing GE, Brian H. JOHNSTON, Mark A. BEHLKE, Heini ILVES, Anne DALLAS
  • Publication number: 20150141635
    Abstract: A composition comprising an oligonucleotide having the structure 5?-Y1-L1-X-L2-Y2-3?. Y1 comprises a sequence of one or more DNA or RNA nucleotides, including a first nucleotide N1 having a 3? phosphate covalently linked to L1. Y2 comprises a sequence of one or more DNA or RNA nucleotides, including a second nucleotide N2 having a 5? phosphate covalently linked to L2. L1 and L2 each independently are a direct bond or a C1-C7 alkyl, alkynyl, alkenyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, substituted aryl, cycloalkyl, alkylaryl, or alkoxyl group. X is R1 is a hydrogen or a C1-C8 alkyl. M is a label or ligand comprising a fused polycyclic aromatic moiety.
    Type: Application
    Filed: December 20, 2014
    Publication date: May 21, 2015
    Inventors: Scott Rose, Mark A. Behlke, Richard Owczarzy, Joseph A. Walder, Derek M. Thomas, Michael R. Marvin
  • Publication number: 20150110860
    Abstract: The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
    Type: Application
    Filed: November 10, 2014
    Publication date: April 23, 2015
    Applicants: CITY OF HOPE, INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: John J. ROSSI, Mark A. BEHLKE, Dongho KIM
  • Publication number: 20150045410
    Abstract: The present invention relates to therapeutic agents comprising miR-138, a miR-138 mimic, a SIN3A RNAi molecule, or a an anti-SIN3A RNAi molecule, and/or an anti-SIN3A antisense oligonucleotide (ASO) or other agent that suppresses SIN3A expression, a small molecule drug that interferes with SIN3A activity or whose actions mimic the biological effects of SIN3A suppression and methods of use of these therapeutic agents to treat cystic fibrosis.
    Type: Application
    Filed: February 6, 2013
    Publication date: February 12, 2015
    Inventors: Paul McCray, Shyam Ramachandran, Yi Xing, Michael Welsh, Mark Behlke
  • Patent number: 8916345
    Abstract: A composition comprising an oligonucleotide having the structure 5?-Y1-L1-X-L2-Y2-3?. Y1 comprises a sequence of one or more DNA or RNA nucleotides, including a first nucleotide N1 having a 3? phosphate covalently linked to L1. Y2 comprises a sequence of one or more DNA or RNA nucleotides, including a second nucleotide N2 having a 5? phosphate covalently linked to L2. L1 and L2 each independently are a direct bond or a C1-C7 alkyl, alkynyl, alkenyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, substituted aryl, cycloalkyl, alkylaryl, or alkoxyl group. X is R1 is a hydrogen or a C1-C8 alkyl. M is a label or ligand comprising a fused polycyclic aromatic moiety.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 23, 2014
    Assignee: Integrated DNA Technologies, Inc.
    Inventors: Scott Rose, Mark A. Behlke, Richard Owczarzy, Joseph A. Walder, Derek M. Thomas, Michael R. Marvin
  • Publication number: 20140357700
    Abstract: The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Applicants: CITY OF HOPE, INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: John J. ROSSI, Mark A. BEHLKE, Dongho KIM