Patents by Inventor Mark C. H. Lamorey

Mark C. H. Lamorey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150206835
    Abstract: An integrated circuit wire structure. The structure includes a set of interconnect levels over a semiconductor substrate, each interconnect level of the set of interconnect levels comprising operational wires embedded in an interlevel dielectric layer; a dielectric barrier layer on an uppermost interconnect level of the set of interconnect levels and a bonding pad on the passivation layer; a stress reduction zone surrounding a perimeter of the bonding pad and extending into the set of interconnect levels; elongated fill wires in each of the interconnect levels in the stress reduction zone, the elongated fill wires not connected to any of the non-ground operational wires; and the elongated fill wires of each interconnect level of each set of interconnect levels physically connected to elongated fill wires of immediately upper and lower interconnect levels of the set of fill levels.
    Type: Application
    Filed: October 13, 2011
    Publication date: July 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mark C. H. Lamorey, David B. Stone
  • Patent number: 9087805
    Abstract: A method of testing an integrated circuit (IC) chip and a related test structure are disclosed. A test structure includes a monitor chain proximate to at least one solder bump pad, the monitor chain including at least one metal via stack, each metal via stack extending from a lower metal layer in the IC chip to an upper metal layer in the IC chip, such that the monitor chain forms a continuous circuit proximate to the at least one solder bump pad, and where each metal via stack is positioned substantially under the solder bump. A method for testing to detect boundaries of safe effective modulus includes performing a stress test on an IC chip containing the test structure joined to a semiconductor package.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: James V. Crain, Jr., Mark C. H. Lamorey, Christopher D. Muzzy, Thomas M. Shaw, David B. Stone
  • Patent number: 9059552
    Abstract: Aspects of the present invention relate to land grid array socket cartridge structures. In one embodiment, a land grid array (LGA) cartridge structure includes: a deformable thin film having at least one aperture configured to hold a substantially liquid metal, whereby in a compressed state of the deformable thin film, the substantially liquid metal of the deformable thin film is configured to electro-mechanically couple a carrier and a socket base. Another embodiment includes a method of forming a LGA cartridge structure. The method includes: providing a deformable thin film having a first surface and a second surface, and forming at least one aperture within the deformable thin film through the first surface and the second surface, wherein the aperture is configured to hold a substantially liquid metal.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Erwin B. Cohen, Mark C. H. Lamorey
  • Patent number: 9057760
    Abstract: Detection circuits, methods of use and manufacture and design structures are provided herein. The structure includes at least one signal line traversing one or more metal layers of an integrated circuit. Circuitry is coupled to the at least one signal line, which is structured to receive a signal with a known signal from the at least one signal line or a signal from a different potential and, based on which signal is received, determine whether there is a structural defect in the integrated circuit.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Luke D. Lacroix, Mark C. H. Lamorey, Steven F. Oakland, Janak G. Patel, Kerry P. Pfarr, Peter Slota, Jr., David B. Stone
  • Patent number: 9006739
    Abstract: A method of testing an integrated circuit (IC) chip and a related test structure are disclosed. A test structure includes a monitor chain proximate to at least one solder bump pad, the monitor chain including at least one metal via stack, each metal via stack extending from a lower metal layer in the IC chip to an upper metal layer in the IC chip, such that the monitor chain forms a continuous circuit proximate to the at least one solder bump pad, and where each metal via stack is positioned substantially under the solder bump. A method for testing to detect boundaries of safe effective modulus includes performing a stress test on an IC chip containing the test structure joined to a semiconductor package.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: James V. Crain, Jr., Mark C. H. Lamorey, Christopher D. Muzzy, Thomas M. Shaw, David B. Stone
  • Patent number: 8999846
    Abstract: An integrated circuit structure includes a plurality of insulator layers (connected to each other) that form a laminated structure. Further included are via openings within each of the insulator layers, and conductive via material within the via openings. The conductive via material within corresponding via openings of adjacent insulator layers are electrically connected to form continuous electrical via paths through the insulator layers between the top surface and the bottom surface of the laminated structure. Within each of the continuous electrical via paths, the via openings are positioned relative to each other to form a diagonal structural path of the conductive via material through the laminated structure. The corresponding via openings of the adjacent insulator layers partially overlap each other. The diagonal structural paths are non-perpendicular to the top surface and the bottom surface.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Luke D. LaCroix, Mark C. H. Lamorey, Janak G. Patel, Peter Slota, Jr., David B. Stone
  • Publication number: 20150044787
    Abstract: A method of testing an integrated circuit (IC) chip and a related test structure are disclosed. A test structure includes a monitor chain proximate to at least one solder bump pad, the monitor chain including at least one metal via stack, each metal via stack extending from a lower metal layer in the IC chip to an upper metal layer in the IC chip, such that the monitor chain forms a continuous circuit proximate to the at least one solder bump pad, and where each metal via stack is positioned substantially under the solder bump. A method for testing to detect boundaries of safe effective modulus includes performing a stress test on an IC chip containing the test structure joined to a semiconductor package.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: James V. Crain, JR., Mark C.H. Lamorey, Christopher D. Muzzy, Thomas M. Shaw, David B. Stone
  • Publication number: 20140227874
    Abstract: An integrated circuit structure includes a plurality of insulator layers (connected to each other) that form a laminated structure. Further included are via openings within each of the insulator layers, and conductive via material within the via openings. The conductive via material within corresponding via openings of adjacent insulator layers are electrically connected to form continuous electrical via paths through the insulator layers between the top surface and the bottom surface of the laminated structure. Within each of the continuous electrical via paths, the via openings are positioned relative to each other to form a diagonal structural path of the conductive via material through the laminated structure. The corresponding via openings of the adjacent insulator layers partially overlap each other. The diagonal structural paths are non-perpendicular to the top surface and the bottom surface.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Luke D. LaCroix, Mark C.H. Lamorey, Janak G. Patel, Peter Slota, JR., David B. Stone
  • Patent number: 8796133
    Abstract: A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Timothy H. Daubenspeck, Mark C. H. Lamorey, Howard S. Landis, Xiao Hu Liu, David L. Questad, Thomas M. Shaw, David B. Stone
  • Publication number: 20140206206
    Abstract: Aspects of the present invention relate to land grid array socket cartridge structures. In one embodiment, a land grid array (LGA) cartridge structure includes: a deformable thin film having at least one aperture configured to hold a substantially liquid metal, whereby in a compressed state of the deformable thin film, the substantially liquid metal of the deformable thin film is configured to electro-mechanically couple a carrier and a socket base. Another embodiment includes a method of forming a LGA cartridge structure. The method includes: providing a deformable thin film having a first surface and a second surface, and forming at least one aperture within the deformable thin film through the first surface and the second surface, wherein the aperture is configured to hold a substantially liquid metal.
    Type: Application
    Filed: January 21, 2013
    Publication date: July 24, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Erwin B. Cohen, Mark C. H. Lamorey
  • Patent number: 8759977
    Abstract: An integrated circuit structure includes a plurality of insulator layers (connected to each other) that form a laminated structure. Further included are via openings within each of the insulator layers, and conductive via material within the via openings. The conductive via material within corresponding via openings of adjacent insulator layers are electrically connected to form continuous electrical via paths through the insulator layers between the top surface and the bottom surface of the laminated structure. Within each of the continuous electrical via paths, the via openings are positioned relative to each other to form a diagonal structural path of the conductive via material through the laminated structure. The corresponding via openings of the adjacent insulator layers partially overlap each other. The diagonal structural paths are non-perpendicular to the top surface and the bottom surface.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: June 24, 2014
    Assignee: International Business Machines Corporation
    Inventors: Luke D. LaCroix, Mark C. H. Lamorey, Janak G. Patel, Peter Slota, Jr., David B. Stone
  • Patent number: 8756546
    Abstract: A computer-implemented method provides an elastic modulus map of a chip carrier of a flip chip package. Design data including dielectric and conductive design elements of each of vertically aligned sub-areas of each of the layers of the chip carrier are modeled as springs to provide the elastic modulus map. Determining the elastic modulus of the sub-areas of the chip carrier identifies probable mechanical failure sites during chip-join and cools down of the flip chip package. Modifying a footprint of solder bumps to the chip carrier reduces stresses applied to the identified probable mechanical failure sites. Modifying the chip carrier design to reduce a stiffness of sub-areas associated with identified probable mechanical failure sites also reduces stresses from chip-join and cool-down.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Erwin B. Cohen, Mark C. H. Lamorey, Marek A. Orlowski, Douglas O. Powell, David L. Questad, David B. Stone, Paul R. Walling
  • Publication number: 20140070340
    Abstract: Normally closed (shut) micro-electro-mechanical switches (MEMS), methods of manufacture and design structures are provided. A structure includes a beam structure that includes a first end hinged on a first electrode and in electrical contact with a second electrode, in its natural state when not actuated.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dawn D. HALL, Mark C.H. LAMOREY, Anthony K. STAMPER
  • Patent number: 8650512
    Abstract: Computer-implemented methods are disclosed for providing an elastic modulus map of an integrated circuit (IC) chip of a chip/device package, for identifying a probable failure site of the chip/device package from the elastic modulus map of the IC chip, for modifying a connector footprint of the chip/device package based on identifying a probable failure site from the elastic modulus map of the IC chip, and for modifying the IC chip based on identifying a probable failure from the elastic modulus map of the IC chip. Each layer of the IC chip may be mapped, and each grid shape of the mapped layers may comprise a metal area and a dielectric area. Grid shapes from each layer of the IC are vertically aligned to provide a combined spring constant for each grid shape, which are then mapped onto the elastic modulus map to identify possible failure sites in the chip/device package.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: February 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Mark C. H. Lamorey, Xiao Hu Liu, Thomas M. Shaw, Thomas A. Wassick
  • Publication number: 20140033148
    Abstract: A computer-implemented method provides an elastic modulus map of a chip carrier of a flip chip package. Design data including dielectric and conductive design elements of each of vertically aligned sub-areas of each of the layers of the chip carrier are modeled as springs to provide the elastic modulus map. Determining the elastic modulus of the sub-areas of the chip carrier identifies probable mechanical failure sites during chip-join and cools down of the flip chip package. Modifying a footprint of solder bumps to the chip carrier reduces stresses applied to the identified probable mechanical failure sites. Modifying the chip carrier design to reduce a stiffness of sub-areas associated with identified probable mechanical failure sites also reduces stresses from chip-join and cool-down.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: Erwin B. Cohen, Mark C.H. Lamorey, Marek A. Orlowski, Douglas O. Powell, David L. Questad, David B. Stone, Paul R. Walling
  • Patent number: 8635765
    Abstract: A method of forming a micro-electrical-mechanical structure (MEMS), includes forming a plurality of electrodes on a substrate, forming a beam structure in electrical contact with a first of the electrodes, and bending the beam structure with a thermal process. The method further includes forming a cantilevered electrode extending over an end of the bent beam structure, and returning the beam structure to its original position, which will contact the cantilevered electrode in a normally closed position.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dawn D. Hall, Mark C. H. Lamorey, Anthony K. Stamper
  • Publication number: 20140021616
    Abstract: A semiconductor structure is provided and includes a substrate having an edge surface and a device surface with a central area, a crack stop structure disposed on the device surface and a circuit structure including components disposed on the device surface in the central area and interconnects electrically coupled to the components. The interconnects are configured to extend from the central area to the edge surface while bridging over the crack stop structure.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Diego Anzola, Evan G. Colgan, Kevin K. Dezfulian, Daniel C. Edelstein, Mark C. H. Lamorey, Sampath Purushothaman, Thomas M. Shaw, Roy R. Yu
  • Publication number: 20140024146
    Abstract: A semiconductor structure is provided and includes a substrate having an edge surface and a device surface with a central area, a crack stop structure disposed on the device surface and a circuit structure including components disposed on the device surface in the central area and interconnects electrically coupled to the components. The interconnects are configured to extend from the central area to the edge surface while bridging over the crack stop structure.
    Type: Application
    Filed: August 3, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Diego Anzola, Evan G. Colgan, Kevin K. Dezfulian, Daniel C. Edelstein, Mark C. H. Lamorey, Sampath Purushothaman, Thomas M. Shaw, Roy R. Yu
  • Publication number: 20140021622
    Abstract: A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: international Business Machines Corporation
    Inventors: Griselda Bonilla, Timothy H. Daubenspeck, Mark C.H. Lamorey, Howard S. Landis, Xiao Hu Liu, David L. Questad, Thomas M. Shaw, David B. Stone
  • Publication number: 20130285251
    Abstract: An integrated circuit structure comprises a plurality of insulator layers (connected to each other) that form a laminated structure. Further included are via openings within each of the insulator layers, and conductive via material within the via openings. The conductive via material within corresponding via openings of adjacent insulator layers are electrically connected to form continuous electrical via paths through the insulator layers between the top surface and the bottom surface of the laminated structure. Within each of the continuous electrical via paths, the via openings are positioned relative to each other to form a diagonal structural path of the conductive via material through the laminated structure. The corresponding via openings of the adjacent insulator layers partially overlap each other. The diagonal structural paths are non-perpendicular to the top surface and the bottom surface.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Luke D. LaCroix, Mark C. H. Lamorey, Janak G. Patel, Peter Slota, JR., David B. Stone