Patents by Inventor Mark Frichtl

Mark Frichtl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200116836
    Abstract: A multispectral sensor array can include a combination of ranging sensor channels (e.g., LIDAR sensor channels) and ambient-light sensor channels tuned to detect ambient light having a channel-specific property (e.g., color). The sensor channels can be arranged and spaced to provide multispectral images of a field of view in which the multispectral images from different sensors are inherently aligned with each other to define an array of multispectral image pixels. Various optical elements can be provided to facilitate imaging operations. Light ranging/imaging systems incorporating multispectral sensor arrays can operate in rotating and/or static modes.
    Type: Application
    Filed: August 7, 2019
    Publication date: April 16, 2020
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Patent number: 10557750
    Abstract: A calibration system is provided including an aperture layer, a lens layer, an optical filter, a pixel layer and a regulator. The aperture layer defines a calibration aperture. The lens layer includes a calibration lens substantially axially aligned with the calibration aperture. The optical filter is adjacent the lens layer opposite the aperture layer. The pixel layer is adjacent the optical filter opposite the lens layer and includes a calibration pixel substantially axially aligned with the calibration lens. The calibration pixel detects light power of an illumination source that outputs a band of wavelengths of light as a function of a parameter. The regulator modifies the parameter of the illumination source based on a light power detected by the calibration pixel.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: February 11, 2020
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl
  • Publication number: 20200041646
    Abstract: Embodiments describe a solid state electronic scanning LIDAR system that includes a scanning focal plane transmitting element and a scanning focal plane receiving element whose operations are synchronized so that the firing sequence of an emitter array in the transmitting element corresponds to a capturing sequence of a photosensor array in the receiving element. During operation, the emitter array can sequentially fire one or more light emitters into a scene and the reflected light can be received by a corresponding set of one or more photosensors through an aperture layer positioned in front of the photosensors. Each light emitter can correspond with an aperture in the aperture layer, and each aperture can correspond to a photosensor in the receiving element such that each light emitter corresponds with a specific photosensor in the receiving element.
    Type: Application
    Filed: October 4, 2019
    Publication date: February 6, 2020
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Publication number: 20200041613
    Abstract: An image sensing device that includes a lens housing; a bulk lens system coupled to the lens housing and configured to receive light from the surrounding environment and focus the received light to a focal plane, the bulk lens system comprising a first lens, a second lens, and a third lens mounted in the lens housing; wherein the first lens, the second lens, or the first lens and the second lens are plastic; and wherein the third lens is glass; an array of photosensors configured to receive light from the bulk lens system and detect reflected portions of the light pulses that are reflected from the objects in the surrounding environment; and a mount that mechanically couples the lens housing with the array of photosensors, wherein the lens housing, the bulk lens system, and the mount are configured to passively focus light from the bulk lens system onto the array of photosensors over a temperature range.
    Type: Application
    Filed: December 4, 2018
    Publication date: February 6, 2020
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Marvin SHU, Eric YOUNGE
  • Publication number: 20200036959
    Abstract: An optical system for collecting distance information within a field is provided. The optical system may include lenses for collecting photons from a field and may include lenses for distributing photons to a field. The optical system may include lenses that collimate photons passed by an aperture, optical filters that reject normally incident light outside of the operating wavelength, and pixels that detect incident photons. The optical system may further include illumination sources that output photons at an operating wavelength.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 30, 2020
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Publication number: 20200025880
    Abstract: A light ranging system including a shaft having a longitudinal axis; a light ranging device configured to rotate about the longitudinal axis of the shaft, the light ranging device including a light source configured to transmit light pulses to objects in a surrounding environment, and detector circuitry configured to detect reflected portions of the light pulses that are reflected from the objects in the surrounding environment and to compute ranging data based on the reflected portion of the light pulses; a base subsystem that does not rotate about the shaft; and an optical communications subsystem configured to provide an optical communications channel between the base subsystem and the light ranging device, the optical communications subsystem including one or more turret optical communication components connected to the detector circuitry and one or more base optical communication components connected to the base subsystem.
    Type: Application
    Filed: December 4, 2018
    Publication date: January 23, 2020
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Marvin SHU, Eric YOUNGE
  • Publication number: 20200025879
    Abstract: A light ranging system including a housing; a shaft defining an axis of rotation; a first circuit board assembly disposed within and coupled to the housing in a fixed relationship such that the first circuit board assembly is aligned along a first plane perpendicular to the axis of rotation, the first circuit board assembly including a plurality of first circuit elements disposed on a first circuit board; a second circuit board assembly spaced apart from the first circuit board assembly within the housing in a second plane parallel to the first plane and rotationally coupled to the shaft such that the second circuit board assembly rotates about the axis of rotation, the second circuit board assembly including a plurality of second circuit elements disposed on a second circuit board and aligned with and configured to function in wireless cooperation with at least one of the first plurality of circuit elements; and a light ranging device electrically connected to and coupled to rotate with the second circuit bo
    Type: Application
    Filed: December 4, 2018
    Publication date: January 23, 2020
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Marvin SHU, Eric YOUNGE
  • Patent number: 10527725
    Abstract: Embodiments describe a solid state electronic scanning LIDAR system that includes a scanning focal plane transmitting element and a scanning focal plane receiving element whose operations are synchronized so that the firing sequence of an emitter array in the transmitting element corresponds to a capturing sequence of a photosensor array in the receiving element. During operation, the emitter array can sequentially fire one or more light emitters into a scene and the reflected light can be received by a corresponding set of one or more photosensors through an aperture layer positioned in front of the photosensors. Each light emitter can correspond with an aperture in the aperture layer, and each aperture can correspond to a photosensor in the receiving element such that each light emitter corresponds with a specific photosensor in the receiving element.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: January 7, 2020
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 10481269
    Abstract: A light ranging system including a shaft; a first circuit board assembly that includes a stator assembly comprising a plurality of stator elements arranged about the shaft on a surface of the first circuit board assembly; a second circuit board assembly rotationally coupled to the shaft, wherein the second circuit board assembly includes a rotor assembly comprising a plurality of rotor elements arranged about the shaft on a surface of the second circuit board assembly such that the plurality of rotor elements are aligned with and spaced apart from the plurality of stator elements; a stator driver circuit disposed on either the second or the first circuit board assemblies and configured to provide a drive signal to the plurality of stator elements, thereby imparting an electromagnetic force on the plurality of rotor elements to drive a rotation of the second circuit board assembly about the shaft; and a light ranging device mechanically coupled to the second circuit board assembly such that the light ranging d
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: November 19, 2019
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Patent number: 10444359
    Abstract: Embodiments describe a solid state electronic scanning LIDAR system that includes a scanning focal plane transmitting element and a scanning focal plane receiving element whose operations are synchronized so that the firing sequence of an emitter array in the transmitting element corresponds to a capturing sequence of a photosensor array in the receiving element. During operation, the emitter array can sequentially fire one or more light emitters into a scene and the reflected light can be received by a corresponding set of one or more photosensors through an aperture layer positioned in front of the photosensors. Each light emitter can correspond with an aperture in the aperture layer, and each aperture can correspond to a photosensor in the receiving element such that each light emitter corresponds with a specific photosensor in the receiving element.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: October 15, 2019
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl
  • Publication number: 20190179028
    Abstract: A light ranging system including a shaft; a first circuit board assembly that includes a stator assembly comprising a plurality of stator elements arranged about the shaft on a surface of the first circuit board assembly; a second circuit board assembly rotationally coupled to the shaft, wherein the second circuit board assembly includes a rotor assembly comprising a plurality of rotor elements arranged about the shaft on a surface of the second circuit board assembly such that the plurality of rotor elements are aligned with and spaced apart from the plurality of stator elements; a stator driver circuit disposed on either the second or the first circuit board assemblies and configured to provide a drive signal to the plurality of stator elements, thereby imparting an electromagnetic force on the plurality of rotor elements to drive a rotation of the second circuit board assembly about the shaft; and a light ranging device mechanically coupled to the second circuit board assembly such that the light ranging d
    Type: Application
    Filed: December 4, 2018
    Publication date: June 13, 2019
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Marvin SHU, Eric YOUNGE
  • Patent number: 10317529
    Abstract: A light ranging system can include a laser device and an imaging device having photosensors. The laser device illuminates a scene with laser pulse radiation that reflects off of objects in the scene. The reflections can vary greatly depending on the reflecting surface shape and reflectivity. The signal measured by photosensors can be filtered with a number of matched filter designed according to profiles of different reflected signals. A best matched filter can be identified, and hence information about the reflecting surface and accurate ranging information can be obtained. The laser pulse radiation can be emitted in coded pulses by allowing weights to different detection intervals. Other enhancements include staggering laser pulses and changing an operational status of photodetectors of a pixel sensor, as well as efficient signal processing using a sensor chip that includes processing circuits and photosensors.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: June 11, 2019
    Assignee: Ouster, Inc.
    Inventors: Marvin Shu, Angus Pacala, Mark Frichtl
  • Publication number: 20190146088
    Abstract: Embodiments describe optical imagers that include one or more micro-optic components. Some imagers can be passive imagers that include a light detection system for receiving ambient light from a field. Some imagers can be active imagers that include a light emission system in addition to the light detection system. The light emission system can be configured to emit light into the field such that emitted light is reflected off surfaces of an object in the field and received by the light detection system. In some embodiments, the light detection system and/or the light emission system includes micro-optic components for improving operational performance.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Eric YOUNGE
  • Patent number: 10222458
    Abstract: Optical systems and methods for collecting distance information are disclosed. An example optical system includes a bulk receiving optic, a plurality of illumination sources, a pixel array comprising at least a first column of pixels and a second column of pixels, each pixel in the first column of pixels being offset from an adjacent pixel in the first column of pixels by a first pixel pitch, the second column of pixels being horizontally offset from the first column of pixels by the first pixel pitch, the second column of pixels being vertically offset from the first column of pixels by a first vertical pitch; and a set of input channels interposed between the bulk receiving optic and the pixel array.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: March 5, 2019
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Patent number: 10222475
    Abstract: Embodiments describe optical imagers that include one or more micro-optic components. Some imagers can be passive imagers that include a light detection system for receiving ambient light from a field. Some imagers can be active imagers that include a light emission system in addition to the light detection system. The light emission system can be configured to emit light into the field such that emitted light is reflected off surfaces of an object in the field and received by the light detection system. In some embodiments, the light detection system and/or the light emission system includes micro-optic components for improving operational performance.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: March 5, 2019
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl, Eric Younge
  • Publication number: 20190064355
    Abstract: Embodiments describe a solid state electronic scanning LIDAR system that includes a scanning focal plane transmitting element and a scanning focal plane receiving element whose operations are synchronized so that the firing sequence of an emitter array in the transmitting element corresponds to a capturing sequence of a photosensor array in the receiving element. During operation, the emitter array can sequentially fire one or more light emitters into a scene and the reflected light can be received by a corresponding set of one or more photosensors through an aperture layer positioned in front of the photosensors. Each light emitter can correspond with an aperture in the aperture layer, and each aperture can correspond to a photosensor in the receiving element such that each light emitter corresponds with a specific photosensor in the receiving element.
    Type: Application
    Filed: July 5, 2018
    Publication date: February 28, 2019
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Publication number: 20190056497
    Abstract: A light ranging system can include a laser device and an imaging device having photosensors. The laser device illuminates a scene with laser pulse radiation that reflects off of objects in the scene. The reflections can vary greatly depending on the reflecting surface shape and reflectivity. The signal measured by photosensors can be filtered with a number of matched filter designed according to profiles of different reflected signals. A best matched filter can be identified, and hence information about the reflecting surface and accurate ranging information can be obtained. The laser pulse radiation can be emitted in coded pulses by allowing weights to different detection intervals. Other enhancements include staggering laser pulses and changing an operational status of photodetectors of a pixel sensor, as well as efficient signal processing using a sensor chip that includes processing circuits and photosensors.
    Type: Application
    Filed: August 31, 2018
    Publication date: February 21, 2019
    Inventors: Angus Pacala, Mark Frichtl
  • Publication number: 20190018111
    Abstract: Optical systems and methods for collecting distance information are disclosed. An example optical system includes a first transmitting optic, a plurality of illumination sources, a pixel array comprising at least a first column of pixels and a second column of pixels, each pixel in the first column of pixels being offset from an adjacent pixel in the first column of pixels by a first pixel pitch, the second column of pixels being horizontally offset from the first column of pixels by the first pixel pitch, the second column of pixels being vertically offset from the first column of pixels by a first vertical pitch; and a set of input channels interposed between the first transmitting optic and the pixel array.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 17, 2019
    Applicant: Ouster, Inc.
    Inventors: Angus Pacala, Mark FRICHTL, Marvin SHU, Eric YOUNGE
  • Publication number: 20190011562
    Abstract: Embodiments describe a solid state electronic scanning LIDAR system that includes a scanning focal plane transmitting element and a scanning focal plane receiving element whose operations are synchronized so that the firing sequence of an emitter array in the transmitting element corresponds to a capturing sequence of a photosensor array in the receiving element. During operation, the emitter array can sequentially fire one or more light emitters into a scene and the reflected light can be received by a corresponding set of one or more photosensors through an aperture layer positioned in front of the photosensors. Each light emitter can correspond with an aperture in the aperture layer, and each aperture can correspond to a photosensor in the receiving element such that each light emitter corresponds with a specific photosensor in the receiving element.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 10, 2019
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Publication number: 20190011561
    Abstract: Embodiments describe a solid state electronic scanning LIDAR system that includes a scanning focal plane transmitting element and a scanning focal plane receiving element whose operations are synchronized so that the firing sequence of an emitter array in the transmitting element corresponds to a capturing sequence of a photosensor array in the receiving element. During operation, the emitter array can sequentially fire one or more light emitters into a scene and the reflected light can be received by a corresponding set of one or more photosensors through an aperture layer positioned in front of the photosensors. Each light emitter can correspond with an aperture in the aperture layer, and each aperture can correspond to a photosensor in the receiving element such that each light emitter corresponds with a specific photosensor in the receiving element.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 10, 2019
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL