Patents by Inventor Mark J. Hagmann

Mark J. Hagmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110074293
    Abstract: Field emission devices utilizing capacitive ballasting are described with possible uses in industry. The preferred device utilizes opposing electrodes, each with a dielectric layer and a plurality of conductive islands which serve to exchange electrons, generating an oscillatory current. Ideally these islands are dome-shaped and made of a refractory metal such as tungsten of molybdenum. Through proper use and selection of materials, electrical fields with densities of 1014 A/m2 are capable of being generated.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Inventor: Mark J. Hagmann
  • Patent number: 7613578
    Abstract: A method of non-invasive determination of electrical current distribution is disclosed. The method utilizes mathematical calculations on data obtained by a probe with non-uniformly wound detection coil. While non-uniform, the coil winding is specific according to a known and determined function, such as a sinusoidal variation. As a further method, the probe may rotate about an area of interest and the data then may be subjected to a Fourier analysis for further refined results. Multiple coils may be used in the probe, each with a different coil function which could include one uniform coil. Also disclosed is a method for making the coils necessary in the practice of the method.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: November 3, 2009
    Inventor: Mark J. Hagmann
  • Publication number: 20080275657
    Abstract: A method of non-invasive determination of electrical current distribution is disclosed. The method utilizes mathematical calculations on data obtained by a probe with non-uniformly wound detection coil. While non-uniform, the coil winding is specific according to a known and determined function, such as a sinusoidal variation. As a further method, the probe may rotate about an area of interest and the data then may be subjected to a Fourier analysis for further refined results. Multiple coils may be used in the probe, each with a different coil function which could include one uniform coil. Also disclosed is a method for making the coils necessary in the practice of the method.
    Type: Application
    Filed: June 7, 2007
    Publication date: November 6, 2008
    Inventor: Mark J. Hagmann
  • Patent number: 7141781
    Abstract: An improved device, method, and system efficiently couple high-frequency energy from radiation-assisted field emission. A radiation source radiates an emitting surface with an electromagnetic field. The electromagnetic field reduces the potential barrier at the emitting surface, allowing electrons to tunnel from the surface. The tunneling electrons produce a current. The electron tunneling current oscillates in response to the oscillations of the electromagnetic field radiation. Two or more electromagnetic fields of different frequencies radiate the emitting surface, causing photomixing. The electron tunneling current oscillates in response to the difference of the frequencies of the electromagnetic fields.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: November 28, 2006
    Inventor: Mark J. Hagmann
  • Patent number: 6864636
    Abstract: A source electrode is biased to lower the potential barrier of surface electrons. A laser radiates the source electrode, producing a tunneling electron current. The tunneling electron current oscillates in response to frequency of the laser. The impedance match circuit couples the current from a high-impedance source electrode of a laser-assisted field emission to a lower-impedance connector, creating a high-frequency microwave signal source. Two or more lasers may be photomixed to further tune the frequency of the microwave signal.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: March 8, 2005
    Inventor: Mark J. Hagmann
  • Publication number: 20030226961
    Abstract: An improved device, method, and system efficiently couple high-frequency energy from radiation-assisted field emission. A radiation source radiates an emitting surface with an electromagnetic field. The electromagnetic field reduces the potential barrier at the emitting surface, allowing electrons to tunnel from the surface. The tunneling electrons produce a current. The electron tunneling current oscillates in response to the oscillations of the electromagnetic field radiation. Two or more electromagnetic fields of different frequencies radiate the emitting surface, causing photomixing. The electron tunneling current oscillates in response to the difference of the frequencies of the electromagnetic fields.
    Type: Application
    Filed: June 11, 2003
    Publication date: December 11, 2003
    Inventor: Mark J. Hagmann
  • Patent number: 6566854
    Abstract: An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: May 20, 2003
    Assignees: Florida International University, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mark J. Hagmann, John F. Sutton
  • Patent number: 6153872
    Abstract: An apparatus for high speed gating of electric current based on the resonant interaction of tunneling electrons with optical fields is disclosed. The present invention biases an electron-emitting tip with a DC voltage source and focuses an output from a laser on the electron-emitting tip to stimulate electron emission from the tip. The electron emission creates an electrical signal that is coupled to circuitry for further processing. In accordance with the present invention, various methods of coupling the electrical signal from the electron-emitting tip are disclosed, as are various methods of reducing the magnitude of the laser output needed to stimulate electron emission, and methods of enhancing the static current density.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: November 28, 2000
    Assignee: Florida International University for and on behalf of the Board of Regents
    Inventors: Mark J. Hagmann, Manuel Brugat
  • Patent number: 5113864
    Abstract: A catheter is used to insert a probe into a tumor undergoing hyperthermia treatment. The probe is designed to isotropically measure the electric field and temperature in the tumor during the hyperthermia treatment. The probe is constructed on a triangular prism and includes a dipole on each prism face oriented at an angle of 54.74 degrees relative to the axis of the prism. Each dipole includes rectifier means therein and the three dipoles are coupled serially using high resistivity lead means. In addition, high resistivity leads are used to couple the dipoles to a high input impedance amplifier. A pair of thermistors are coupled between the three dipoles, and high resistance lead means couple the thermistors to high input impedance amplifiers. A current source is used to provide current to the thermistors in a time shared manner when the electric field is not being measured.
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: May 19, 1992
    Assignee: Florida International University
    Inventors: Mark J. Hagmann, Tadeusz M. Babij
  • Patent number: 4913153
    Abstract: A current detector for detecting the high frequency current flowing in a conductor includes a coil of high resistivity material wound around an non-ferromagnetic core. The coil is arranged in a substantially closed loop configuration around the conductor carrying the current to be measured. The ratio of the winding spacing to the cross sectional area of the coil is maintained constant over the length of the winding. A shield of high resistivity material surrounds the coil and is spaced from the coils and the shield has a gap oriented along an azimuth of the closed loop winding and directed orthogonal to the net current direction of the current induced in the coil. The ends of the coil are coupled to a high impedance voltage detector through high resistivity leads and a relatively low value resistor is coupled between the leads to reduce the quality factor.
    Type: Grant
    Filed: November 13, 1987
    Date of Patent: April 3, 1990
    Assignee: Florida International University
    Inventors: Mark J. Hagmann, Tadeusz M. Babij
  • Patent number: 4897600
    Abstract: A current detector for detecting the high frequency current flowing in a conductor includes a coil of high resistivity material wound around an non-ferromagnetic core. The coil is arranged in a substantially closed loop configuration around the conductor carrying the current to be measured. The ratio of the winding spacing to the cross sectional area of the coil is maintained constant over the length of the winding. A shield of high resistivity material surrounds the coil and is spaced from the coils and the shield has a gap oriented along an azimuth of the closed loop winding and directed orthogonal to the net current direction of the current induced in the coil. The ends of the coil are coupled to a high impedance voltage detector through high resistivity leads and a relatively low value resistor is coupled between the leads to reduce the quality factor.
    Type: Grant
    Filed: November 13, 1987
    Date of Patent: January 30, 1990
    Assignee: Florida International University
    Inventors: Mark J. Hagmann, Tadeusz M. Babij
  • Patent number: D662430
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: June 26, 2012
    Inventor: Mark J. Hagmann