Patents by Inventor Mark J. Sowa

Mark J. Sowa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180200753
    Abstract: Molecular layer deposition processes for forming organic or hybrid organic/inorganic thin films on a substrate in a reaction chamber that include: providing a pulse of a first vapor phase organic or metal-organic precursor containing a plurality of groups reactive towards hydroxyl groups such that some of the reactive groups react with hydroxyl groups on the substrate to form an organic or hybrid organic/inorganic thin film while leaving some reactive groups available for reaction with a subsequent second precursor pulse; removing excess first reactant and reaction byproducts; providing a pulse of a second vapor phase organic precursor containing a plurality of hydroxyl groups (polyol) such that some of the hydroxyl groups react with the reactive sites of the first precursor on the substrate to form an organic thin film while leaving some hydroxyl groups available for reaction with a subsequent first precursor pulse; and removing excess second reactant and reaction byproducts.
    Type: Application
    Filed: January 16, 2018
    Publication date: July 19, 2018
    Inventor: Mark J. Sowa
  • Publication number: 20170241019
    Abstract: Methods of performing PE-ALD on a substrate with reduced quartz-based contamination are disclosed. The methods include inductively forming in a quartz plasma tube a hydrogen-based plasma from a feed gas that consists essentially of either hydrogen and nitrogen or hydrogen, argon and nitrogen. The nitrogen constitutes 2 vol % or less of the feed gas. The hydrogen-based plasma includes one or more reactive species. The one or more reactive species in the hydrogen-based plasma are directed to the substrate to cause the one or more reactive species to react with a initial film on the substrate. The trace amounts of nitrogen serve to reduce the amount of quartz-based contamination in the initial film as compared to using no nitrogen in the feed gas.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 24, 2017
    Applicant: Ultratech, Inc.
    Inventors: Mark J. Sowa, Adam Bertuch, Ritwik Bhatia
  • Patent number: 9318319
    Abstract: A method of performing a radical-enhanced atomic-layer deposition process on a surface of a substrate that resides within an interior of a reactor chamber is disclosed. The method includes forming plasma from a gas mixture consisting of CF4 and O2, wherein the CF4 is present in a concentration in the range from 0.1 vol % to 10 vol %. The plasma formed from the gas mixture generates oxygen radicals O* faster than if there were no CF4 present in the gas mixture. The method also includes feeding the oxygen radicals and a precursor gas sequentially into the interior of the reactor chamber to form an oxide film on the surface of the substrate. A system for performing the radical-enhanced atomic-layer deposition process using the rapidly formed oxygen radicals is also disclosed.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 19, 2016
    Assignee: Ultratech, Inc.
    Inventors: Arthur W. Zafiropoulo, Mark J. Sowa
  • Publication number: 20160064208
    Abstract: A method of performing a radical-enhanced atomic-layer deposition process on a surface of a substrate that resides within an interior of a reactor chamber is disclosed. The method includes forming plasma from a gas mixture consisting of CF4 and O2, wherein the CF4 is present in a concentration in the range from 0.1 vol % to 10 vol %. The plasma formed from the gas mixture generates oxygen radicals O* faster than if there were no CF4 present in the gas mixture. The method also includes feeding the oxygen radicals and a precursor gas sequentially into the interior of the reactor chamber to form an oxide film on the surface of the substrate. A system for performing the radical-enhanced atomic-layer deposition process using the rapidly formed oxygen radicals is also disclosed.
    Type: Application
    Filed: June 19, 2015
    Publication date: March 3, 2016
    Applicant: ULTRATECH, INC.
    Inventors: Arthur W. Zafiropoulo, Mark J. Sowa