Patents by Inventor Mark J. Ulm

Mark J. Ulm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11865019
    Abstract: A stent and method of making incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect element(s) across an intervening space. The polymeric connecting elements are designed to fold within the space between the outer diameter of the stent and the inner diameter of the stent.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 9, 2024
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Ryan D. Kariniemi, Jeffrey J. Kustusch, Mark J. Ulm
  • Publication number: 20220226137
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, a covering member disposed about the endoprosthesis, and at least one flexible element situated between the endoprosthesis and the covering member. The covering member can extend beyond an end of the endoprosthesis. In operation, as the covering member is removed, the flexible element can guide the covering member over the end of the endoprosthesis to prevent entanglement between the end of the endoprosthesis and the covering member.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Larry J. Kovach, Douglas F. Pajot, Brandon C. Short, Mark J. Ulm, Michael J. Vonesh
  • Patent number: 11324617
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, a covering member disposed about the endoprosthesis, and at least one flexible element situated between the endoprosthesis and the covering member. The covering member can extend beyond an end of the endoprosthesis. In operation, as the covering member is removed, the flexible element can guide the covering member over the end of the endoprosthesis to prevent entanglement between the end of the endoprosthesis and the covering member.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: May 10, 2022
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Larry J. Kovach, Douglas F. Pajot, Brandon C. Short, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20210378848
    Abstract: A stent and method of making incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect element(s) across an intervening space. The polymeric connecting elements are designed to fold within the space between the outer diameter of the stent and the inner diameter of the stent.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: Ryan D. Kariniemi, Jeffrey J. Kustusch, Mark J. Ulm
  • Patent number: 11129736
    Abstract: A stent and method of making incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect element(s) across an intervening space. The polymeric connecting elements are designed to fold within the space between the outer diameter of the stent and the inner diameter of the stent.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: September 28, 2021
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Ryan D. Kariniemi, Jeffrey J. Kustusch, Mark J. Ulm
  • Patent number: 11103373
    Abstract: The present invention is directed to a deployment system for an endoluminal device. The deployment system includes a confining sheath placed around a compacted endoluminal device. A deployment line is provided in the system. As the deployment line is actuated, the sheath retracts from around the compacted endoluminal device. Once the sheath is retracted from around the compacted endoluminal device, the endoluminal device is operable to expand. Any remaining sheath material is removed from the implantation site along with the deployment line.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: August 31, 2021
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Edward H. Cully, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20180125683
    Abstract: A stent and method of making incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect element(s) across an intervening space. The polymeric connecting elements are designed to fold within the space between the outer diameter of the stent and the inner diameter of the stent.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Ryan D. Kariniemi, Jeffrey J. Kustusch, Mark J. Ulm
  • Publication number: 20180116842
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, a covering member disposed about the endoprosthesis, and at least one flexible element situated between the endoprosthesis and the covering member. The covering member can extend beyond an end of the endoprosthesis. In operation, as the covering member is removed, the flexible element can guide the covering member over the end of the endoprosthesis to prevent entanglement between the end of the endoprosthesis and the covering member.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 3, 2018
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Larry J. Kovach, Douglas F. Pajot, Brandon C. Short, Mark J. Ulm, Michael J. Vonesh
  • Patent number: 9895243
    Abstract: A stent incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect adjacent metallic stent element(s) across an intervening space and have optimized geometries. In one configuration the metallic elements are the result of forming the stent from a helically wound serpentine wire having intervening spaces between adjacent helical windings of the wire. The polymeric connecting elements are designed to fold within the space between the outer diameter of the stent and the inner diameter of the stent when the stent is subjected to compaction or bending. Other stent forms such as multiple, individual spaced-apart ring-shaped or interconnected stent elements may also be used.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: February 20, 2018
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Ryan D. Kariniemi, Jeffrey J. Kustusch, Mark J. Ulm
  • Patent number: 9855160
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, a covering member disposed about the endoprosthesis, and at least one flexible element situated between the endoprosthesis and the covering member. The covering member can extend beyond an end of the endoprosthesis. In operation, as the covering member is removed, the flexible element can guide the covering member over the end of the endoprosthesis to prevent entanglement between the end of the endoprosthesis and the covering member.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: January 2, 2018
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Larry J. Kovach, Douglas F. Pajot, Brandon C. Short, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20170224509
    Abstract: The present invention is directed to a deployment system for an endoluminal device. The deployment system includes a confining sheath placed around a compacted endoluminal device. A deployment line is provided in the system. As the deployment line is actuated, the sheath retracts from around the compacted endoluminal device. Once the sheath is retracted from around the compacted endoluminal device, the endoluminal device is operable to expand. Any remaining sheath material is removed from the implantation site along with the deployment line.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: Edward H. Cully, Mark J. Ulm, Michael J. Vonesh
  • Patent number: 9662237
    Abstract: The present invention is directed to a deployment system for an endoluminal device. The deployment system includes a confining sheath placed around a compacted endoluminal device. A deployment line is provided in the system that is an integral extension of the sheath. As the deployment line is actuated, the sheath retracts from around the compacted endoluminal device. As the sheath retracts from around the endoluminal device, material from the sheath may be converted into deployment line. Once the sheath is retracted from around the compacted endoluminal device, the endoluminal device expands in configuration and repairs vascular or cardiac structures of an implant recipient. Any remaining sheath material is removed from the implantation site along with the deployment line.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: May 30, 2017
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Edward H. Cully, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20160015538
    Abstract: A stent incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect adjacent metallic stent element(s) across an intervening space and have optimized geometries. In one configuration the metallic elements are the result of forming the stent from a helically wound serpentine wire having intervening spaces between adjacent helical windings of the wire. The polymeric connecting elements are designed to fold within the space between the outer diameter of the stent and the inner diameter of the stent when the stent is subjected to compaction or bending. Other stent forms such as multiple, individual spaced-apart ring-shaped or interconnected stent elements may also be used.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 21, 2016
    Inventors: Ryan D. Kariniemi, Jeffrey J. Kustusch, Mark J. Ulm
  • Patent number: 9056001
    Abstract: Large diameter self-expanding endoprosthetic devices, such as stents and stent grafts for delivery to large diameter vessels, such as the aorta, are disclosed having very small compacted delivery dimensions. Devices with deployed dimensions of 26 to 40 mm or more are disclosed that are compacted to extremely small dimensions of 5 mm or less, enabling percutaneous delivery of said devices without the need for surgical intervention. Compaction efficiencies are achieved by combining unique material combinations with new forms of restraining devices, compaction techniques, and delivery techniques. These inventive devices permit consistent percutaneous delivery of large vessel treatment devices. Additionally, small endoprosthetic devices are disclosed that can be compacted to extremely small dimensions for delivery through catheter tubes of less than 1 mm diameter.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 16, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20140303711
    Abstract: The present invention is directed to a deployment system for an endoluminal device. The deployment system includes a confining sheath placed around a compacted endoluminal device. A deployment line is provided in the system that is an integral extension of the sheath. As the deployment line is actuated, the sheath retracts from around the compacted endoluminal device. As the sheath retracts from around the endoluminal device, material from the sheath may be converted into deployment line. Once the sheath is retracted from around the compacted endoluminal device, the endoluminal device expands in configuration and repairs vascular or cardiac structures of an implant recipient. Any remaining sheath material is removed from the implantation site along with the deployment line.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 9, 2014
    Inventors: Edward H. Cully, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20140277363
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, a covering member disposed about the endoprosthesis, and at least one flexible element situated between the endoprosthesis and the covering member. The covering member can extend beyond an end of the endoprosthesis. In operation, as the covering member is removed, the flexible element can guide the covering member over the end of the endoprosthesis to prevent entanglement between the end of the endoprosthesis and the covering member.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Larry J. Kovach, Douglas F. Pajot, Brandon C. Short, Mark J. Ulm, Michael J. Vonesh
  • Patent number: 8177832
    Abstract: An endoprosthesis expansion system having, in combination, a delivery component such as a length of catheter tubing having at its distal end an intermediate sheath component, and an inner tube within the full length of the delivery catheter and intermediate sheath component. The inner tube has a protrusion affixed to its distal end, and an expandable endoprosthesis is fitted in a compacted state about the intermediate sheath, immediately proximal to the protrusion. If the endoprosthesis is a self-expanding endoprosthesis (as is preferred), an exterior constraining sheath is required around the outer surface of the endoprosthesis.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: May 15, 2012
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Craig T. Nordhausen, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20100331956
    Abstract: An endoprosthesis expansion system having, in combination, a delivery component such as a length of catheter tubing having at its distal end an intermediate sheath component, and an inner tube within the full length of the delivery catheter and intermediate sheath component. The inner tube has a protrusion affixed to its distal end, and an expandable endoprosthesis is fitted in a compacted state about the intermediate sheath, immediately proximal to the protrusion. If the endoprosthesis is a self-expanding endoprosthesis (as is preferred), an exterior constraining sheath is required around the outer surface of the endoprosthesis.
    Type: Application
    Filed: September 7, 2010
    Publication date: December 30, 2010
    Inventors: Joseph R. Armstrong, Edward H. Cully, Craig T. Nordhausen, Mark J. Ulm, Michael J. Vonesh
  • Patent number: 7753945
    Abstract: The present invention is directed to a deployment system for an endoluminal device. The deployment system includes a confining sheath placed around a compacted endoluminal device. A deployment line is provided in the system that is an integral extension of the sheath. As the deployment line is actuated, the sheath retracts from around the compacted endoluminal device. As the sheath retracts from around the endoluminal device, material from the sheath may be converted into deployment line. Once the sheath is retracted from around the compacted endoluminal device, the endoluminal device expands in configuration and repairs vascular or cardiac structures of an implant recipient. Any remaining sheath material is removed from the implantation site along with the deployment line. The deployment system also includes an endo-prosthesis mounting member placed between the endoluminal device and an underlying catheter.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: July 13, 2010
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Steven R. Bruun, Edward H. Cully, James W. Mann, Mark J. Ulm, Michael J. Vonesh
  • Patent number: 7691109
    Abstract: Large diameter self-expanding endoprosthetic devices, such as stents and stent grafts for delivery to large diameter vessels, such as the aorta, are disclosed having very small compacted delivery dimensions. Devices with deployed dimensions of 26 to 40 mm or more are disclosed that are compacted to extremely small dimensions of 5 mm or less, enabling percutaneous delivery of said devices without the need for surgical intervention. Compaction efficiencies are achieved by combining unique material combinations with new forms of restraining devices, compaction techniques, and delivery techniques. These inventive devices permit consistent percutaneous delivery of large vessel treatment devices. Additionally, small endoprosthetic devices are disclosed that can be compacted to extremely small dimensions for delivery through catheter tubes of less than 1 mm diameter.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: April 6, 2010
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Mark J. Ulm, Michael J. Vonesh