Patents by Inventor Mark Johnsgard

Mark Johnsgard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8771407
    Abstract: Various apparatus provide for spraying high velocity droplets of liquid into a low velocity gas stream. Finely atomized droplets may quickly transfer their momentum to the gas, resulting in deceleration of the spray and acceleration of the gas. A high velocity spray of atomized liquid may transfer a substantial fraction of its kinetic energy to the gas before contacting a surface, in some aspects, suspended particles in the gas phase may be removed by high velocity liquid droplets passing through the gas. Certain aspects provide for controlling a gas flow by controlling the relative amounts of upstream and downstream momenta transferred to the gas by one or more liquid sprays.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: July 8, 2014
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Patent number: 8496741
    Abstract: Aspects include a valve comprising a flowing liquid, operable to control a flow of gas through a port. Certain aspects include reaction chambers operable to react gases, and in some aspects gases are substantially contained within an envelope comprised of a flowing liquid. Certain embodiments control gas entrance into a chamber with a valve comprised of a flowing liquid controlling gas flow through a port. Various gas scrubbing systems are described, including systems comprising reaction chambers operable to react gases that yield substantial amounts of solid reaction products. Methods for controlling gas flow are disclosed. Systems and methods include sequential steps of wet-scrubbing, reacting and further wet-scrubbing a gas stream.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: July 30, 2013
    Assignee: Airgard, Inc.
    Inventor: Mark Johnsgard
  • Publication number: 20120037003
    Abstract: Various apparatus provide for spraying high velocity droplets of liquid into a low velocity gas stream. Finely atomized droplets may quickly transfer their momentum to the gas, resulting in deceleration of the spray and acceleration of the gas. A high velocity spray of atomized liquid may transfer a substantial fraction of its kinetic energy to the gas before contacting a surface, in some aspects, suspended particles in the gas phase may be removed by high velocity liquid droplets passing through the gas. Certain aspects provide for controlling a gas flow by controlling the relative amounts of upstream and downstream momenta transferred to the gas by one or more liquid sprays.
    Type: Application
    Filed: August 15, 2011
    Publication date: February 16, 2012
    Applicant: Airgard, Inc.
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Patent number: 7942951
    Abstract: A low-maintenance scrubber inlet device is provided for delivering effluent gases to gas scrubbers. The scrubber inlet device may comprise an interior volume configured to receive effluent gases and direct the effluent gases into the scrubber while maintaining the temperature of the effluent gases. In some instances, a heated gas is introduced to maintain the effluent gas temperature. The scrubber interface device is configured to deliver the effluent gas stream from the inlet manifold to the gas scrubbing system, and to have a very low susceptibility to clogging.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: May 17, 2011
    Assignee: Airgard, Inc.
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Publication number: 20110076211
    Abstract: Aspects include a valve comprising a flowing liquid, operable to control a flow of gas through a port. Certain aspects include reaction chambers operable to react gases, and in some aspects gases are substantially contained within an envelope comprised of a flowing liquid. Certain embodiments control gas entrance into a chamber with a valve comprised of a flowing liquid controlling gas flow through a port. Various gas scrubbing systems are described, including systems comprising reaction chambers operable to react gases that yield substantial amounts of solid reaction products. Methods for controlling gas flow are disclosed. Systems and methods include sequential steps of wet-scrubbing, reacting and further wet-scrubbing a gas stream.
    Type: Application
    Filed: December 1, 2010
    Publication date: March 31, 2011
    Inventor: Mark Johnsgard
  • Patent number: 7854792
    Abstract: Aspects include a valve comprising a flowing liquid, operable to control a flow of gas through a port. Certain aspects include reaction chambers operable to react gases, and in some aspects gases are substantially contained within an envelope comprised of a flowing liquid. Certain embodiments control gas entrance into a chamber with a valve comprised of a flowing liquid controlling gas flow through a port. Various gas scrubbing systems are described, including systems comprising reaction chambers operable to react gases that yield substantial amounts of solid reaction products. Methods for controlling gas flow are disclosed. Systems and methods include sequential steps of wet-scrubbing, reacting and further wet-scrubbing a gas stream.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: December 21, 2010
    Assignee: Airgard, Inc.
    Inventor: Mark Johnsgard
  • Patent number: 7794678
    Abstract: An effluent gas scrubber and a method of scrubbing effluent gases are provided. An inlet port receives an effluent gas. The gas passes through successive chambers in which it is sprayed with a scrubbing fluid. An oxidizer within the scrubbing fluid is effective to oxidize non-water soluble gases within the effluent gas. An oxidation-reduction potential probe measures the oxidation-reduction potential of the scrubbing fluid and adds the oxidizer to the scrubbing fluid as needed. A pH probe measures the pH of the scrubbing fluid and adds a base to the scrubbing fluid as needed to maintain the pH at or above a threshold such as pH 7, or pH 12.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 14, 2010
    Assignee: Airgard, Inc.
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Patent number: 7771514
    Abstract: A low-maintenance scrubber inlet device is provided for delivering effluent gases to gas scrubbers. The scrubber inlet device comprises a scrubber interface device in fluid communication with an inlet manifold. The inlet manifold is configured to receive effluent gases and direct the effluent gases into the scrubber interface device while maintaining the temperature of the effluent gases. In some instances, a heated gas is introduced into the inlet manifold to maintain the effluent gas temperature. The scrubber interface device is configured to deliver the effluent gas stream from the inlet manifold to the gas scrubbing system, and to have a very low susceptibility to clogging.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: August 10, 2010
    Assignee: Airgard, Inc.
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Publication number: 20100064891
    Abstract: Aspects include a valve comprising a flowing liquid, operable to control a flow of gas through a port. Certain aspects include reaction chambers operable to react gases, and in some aspects gases are substantially contained within an envelope comprised of a flowing liquid. Certain embodiments control gas entrance into a chamber with a valve comprised of a flowing liquid controlling gas flow through a port. Various gas scrubbing systems are described, including systems comprising reaction chambers operable to react gases that yield substantial amounts of solid reaction products. Methods for controlling gas flow are disclosed. Systems and methods include sequential steps of wet-scrubbing, reacting and further wet-scrubbing a gas stream.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventor: Mark Johnsgard
  • Publication number: 20100015021
    Abstract: An effluent gas scrubber and a method of scrubbing effluent gases are provided. An inlet port receives an effluent gas. The gas passes through successive chambers in which it is sprayed with a scrubbing fluid. An oxidizer within the scrubbing fluid is effective to oxidize non-water soluble gases within the effluent gas. An oxidation-reduction potential probe measures the oxidation-reduction potential of the scrubbing fluid and adds the oxidizer to the scrubbing fluid as needed. A pH probe measures the pH of the scrubbing fluid and adds a base to the scrubbing fluid as needed to maintain the pH at or above a threshold such as pH 7, or pH 12.
    Type: Application
    Filed: September 25, 2009
    Publication date: January 21, 2010
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Patent number: 7611684
    Abstract: An effluent gas scrubber and a method of scrubbing effluent gases are provided. An inlet port receives an effluent gas. The gas passes through successive chambers in which it is sprayed with a scrubbing fluid. An oxidizer within the scrubbing fluid is effective to oxidize non-water soluble gases within the effluent gas. An oxidation-reduction potential probe measures the oxidation-reduction potential of the scrubbing fluid and adds the oxidizer to the scrubbing fluid as needed. A pH probe measures the pH of the scrubbing fluid and adds a base to the scrubbing fluid as needed to maintain the pH at or above a threshold such as pH 7, or pH 12.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: November 3, 2009
    Assignee: Airgard, Inc.
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Publication number: 20090205495
    Abstract: A low-maintenance scrubber inlet device is provided for delivering effluent gases to gas scrubbers. The scrubber inlet device may comprise an interior volume configured to receive effluent gases and direct the effluent gases into the scrubber while maintaining the temperature of the effluent gases. In some instances, a heated gas is introduced to maintain the effluent gas temperature. The scrubber interface device is configured to deliver the effluent gas stream from the inlet manifold to the gas scrubbing system, and to have a very low susceptibility to clogging.
    Type: Application
    Filed: April 24, 2009
    Publication date: August 20, 2009
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Publication number: 20080038171
    Abstract: An effluent gas scrubber and a method of scrubbing effluent gases are provided. An inlet port receives an effluent gas. The gas passes through successive chambers in which it is sprayed with a scrubbing fluid. An oxidizer within the scrubbing fluid is effective to oxidize non-water soluble gases within the effluent gas. An oxidation-reduction potential probe measures the oxidation-reduction potential of the scrubbing fluid and adds the oxidizer to the scrubbing fluid as needed. A pH probe measures the pH of the scrubbing fluid and adds a base to the scrubbing fluid as needed to maintain the pH at or above a threshold such as pH 7, or pH 12.
    Type: Application
    Filed: August 8, 2007
    Publication date: February 14, 2008
    Inventors: Mark Johnsgard, Kris Johnsgard
  • Publication number: 20050133159
    Abstract: Systems and methods for epitaxial deposition. The reactor includes a hot wall process cavity enclosed by a heater system, a thermal insulation system, and chamber walls. The walls of the process cavity may comprises a material having a substantially similar coefficient thermal expansion as the semiconductor substrate, such as quartz and silicon carbide, and may include an isothermal or near isothermal cavity that may be heated to temperatures as high as 1200 degrees C. Process gases may be injected through a plurality of ports, and are capable of achieving a fine level of distribution control of the gas components, including the film source gas, dopant source gas, and carrier gas. The gas supply system includes additional methods of delivering gas to the process cavity, such as through temperature measurement devices, and through a showerhead. In one embodiment of the present invention, the system is capable of utilizing silane as a silicon source gas.
    Type: Application
    Filed: November 24, 2004
    Publication date: June 23, 2005
    Inventors: Kristian Johnsgard, David Sallows, Daniel Messineo, Robert Mailho, Mark Johnsgard