Patents by Inventor Mark L. Doczy

Mark L. Doczy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170170318
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 9614083
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: April 4, 2017
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20170092846
    Abstract: Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF).
    Type: Application
    Filed: July 7, 2014
    Publication date: March 30, 2017
    Applicant: INTEL CORPORATION
    Inventors: BRIAN S. DOYLE, KAAN OGUZ, CHARLES C. KUO, MARK L. DOCZY, SATYARTH SURI, DAVID L. KENCKE, ROBERT S. CHAU, ROKSANA GOLIZADEH MOJARAD
  • Publication number: 20170040530
    Abstract: Perpendicular spin transfer torque memory (STTM) devices with enhanced stability and methods of fabricating perpendicular STTM devices with enhanced stability are described. For example, a material layer stack for a magnetic tunneling junction includes a fixed magnetic layer. A dielectric layer is disposed above the fixed magnetic layer. A free magnetic layer is disposed above the dielectric layer. A conductive oxide material layer is disposed on the free magnetic layer.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 9, 2017
    Inventors: Brian S. Doyle, Charles C. Kuo, Kaan Oguz, Uday Shah, Elijah V. Karpov, Roksana Golizadeh Mojarad, Mark L. Doczy, Robert S. Chau
  • Patent number: 9548363
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: January 17, 2017
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 9548441
    Abstract: Magnetic tunnel junctions (MTJ) suitable for spin transfer torque memory (STTM) devices, include perpendicular magnetic layers and one or more anisotropy enhancing layer(s) separated from a free magnetic layer by a crystallization barrier layer. In embodiments, an anisotropy enhancing layer improves perpendicular orientation of the free magnetic layer while the crystallization barrier improves tunnel magnetoresistance (TMR) ratio with better alignment of crystalline texture of the free magnetic layer with that of a tunneling layer.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: January 17, 2017
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Mark L. Doczy, Brian Doyle, Uday Shah, David L. Kencke, Roksana Golizadeh Mojarad, Robert S. Chau
  • Publication number: 20160359101
    Abstract: Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.
    Type: Application
    Filed: March 28, 2014
    Publication date: December 8, 2016
    Applicant: INTEL CORPORATION
    Inventors: CHARLES C. KUO, KAAN OGUZ, BRIAN S. DOYLE, MARK L. DOCZY, DAVID L. KENCKE, SATYARTH SURI, ROBERT S. CHAU
  • Publication number: 20160351238
    Abstract: Techniques are disclosed for forming a spin-transfer torque memory (STTM) element having an annular contact to reduce critical current requirements. The techniques reduce critical current requirements for a given magnetic tunnel junction (MTJ), because the annular contact reduces contact size and increases local current density, thereby reducing the current needed to switch the direction of the free magnetic layer of the MTJ. In some cases, the annular contact surrounds at least a portion of an insulator layer that prevents the passage of current. In such cases, current flows through the annular contact and around the insulator layer to increase the local current density before flowing through the free magnetic layer. The insulator layer may comprise a dielectric material, and in some cases, is a tunnel material, such as magnesium oxide (MgO). In some cases, a critical current reduction of at least 10% is achieved for a given MTJ.
    Type: Application
    Filed: March 26, 2014
    Publication date: December 1, 2016
    Applicant: INTEL CORPORATION
    Inventors: BRIAN S. DOYLE, DAVID L. KENCKE, KAAN OGUZ, MARK L. DOCZY, SATYARTH SURI, ROBERT S. CHAU, CHARLES C. KUO, ROKSANA GOLIZADEH MOJARAD
  • Patent number: 9496486
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: November 15, 2016
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Patent number: 9478734
    Abstract: Perpendicular spin transfer torque memory (STTM) devices with enhanced stability and methods of fabricating perpendicular STTM devices with enhanced stability are described. For example, a material layer stack for a magnetic tunneling junction includes a fixed magnetic layer. A dielectric layer is disposed above the fixed magnetic layer. A free magnetic layer is disposed above the dielectric layer. A conductive oxide material layer is disposed on the free magnetic layer.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: October 25, 2016
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Charles C. Kuo, Kaan Oguz, Uday Shah, Elijah V. Karpov, Roksana Golizadeh Mojarad, Mark L. Doczy, Robert S. Chau
  • Publication number: 20160284847
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20160197159
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Application
    Filed: March 10, 2016
    Publication date: July 7, 2016
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Publication number: 20160197185
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Patent number: 9368583
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: June 14, 2016
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 9337307
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: May 10, 2016
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Publication number: 20160111423
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar AmIan, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 9287380
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: March 15, 2016
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Patent number: 9214215
    Abstract: Switching current in Spin-Transfer Torque Memory (STTM) can be decreased. A magnetic memory cell is driven with a first pulse on a write line of the memory cell to heat the cell. The cell is then driven with a second pulse on the write line to set the state of the cell.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 15, 2015
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Kaan Oguz, Satyarth Suri, Robert S. Chau, Charles S. Kuo, Mark L. Doczy, David L. Kencke
  • Publication number: 20150333252
    Abstract: Perpendicular spin transfer torque memory (STTM) devices having offset cells and methods of fabricating perpendicular STTM devices having offset cells are described. For example, a spin torque transfer memory (STTM) array includes a first load line disposed above a substrate and having only a first STTM device. The STTM array also includes a second load line disposed above the substrate, adjacent the first load line, and having only a second STTM device, the second STTM device non-co-planar with the first STTM device.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Uday Shah, Kaan Oguz, Mark L. Doczy, Satyarth Suri, Clair Webb
  • Publication number: 20150255711
    Abstract: Perpendicular spin transfer torque memory (STTM) devices with enhanced stability and methods of fabricating perpendicular STTM devices with enhanced stability are described. For example, a material layer stack for a magnetic tunneling junction includes a fixed magnetic layer. A dielectric layer is disposed above the fixed magnetic layer. A free magnetic layer is disposed above the dielectric layer. A conductive oxide material layer is disposed on the free magnetic layer.
    Type: Application
    Filed: May 27, 2015
    Publication date: September 10, 2015
    Inventors: Brian S. Doyle, Charles C. Kuo, Kaan Oguz, Uday Shah, Elijah V. Karpov, Roksana Golizadeh Mojarad, Mark L. Doczy, Robert S. Chau