Patents by Inventor Mark Leighton Howell

Mark Leighton Howell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6634221
    Abstract: A method of detection and identification of pressure sensor faults in an electro-hydraulic braking system of the type comprising a brake pedal, respective braking devices connected to the vehicle wheels and which communicate with electronically controlled proportional control valves in order to apply hydraulic fluid under pressure to the braking devices, respective pressure sensors for measuring the hydraulic pressures at the individual braking devices, a hydraulic pump driven by an electric motor, a high pressure hydraulic pressure accumulator fed by the pump for the provision of hydraulic fluid under pressure which can be passed to the braking devices via the proportional control valves in order to apply hydraulic fluid under pressure to the braking devices in proportion to the driver's braking demand as sensed at the brake pedal, and a supply pressure sensor for monitoring the hydraulic pressure supplied to the electronically controlled proportional control valves.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: October 21, 2003
    Assignee: Lucas Industries plc
    Inventors: Alan Leslie Harris, Mark Leighton Howell, Mark Ian Phillips
  • Publication number: 20020166369
    Abstract: A method of detection and identification of pressure sensor faults in an electro-hydraulic braking system of the type comprising a brake pedal, respective braking devices connected to the vehicle wheels and which communicate with electronically controlled proportional control valves in order to apply hydraulic fluid under pressure to the braking devices, respective pressure sensors for measuring the hydraulic pressures at the individual braking devices, a hydraulic pump driven by an electric motor, a high pressure hydraulic pressure accumulator fed by the pump for the provision of hydraulic fluid under pressure which can be passed to the braking devices via the proportional control valves in order to apply hydraulic fluid under pressure to the braking devices in proportion to the driver's braking demand as sensed at the brake pedal, and a supply pressure sensor for monitoring the hydraulic pressure supplied to the electronically controlled proportional control valves.
    Type: Application
    Filed: March 26, 2002
    Publication date: November 14, 2002
    Inventors: Alan Leslie Harris, Mark Leighton Howell, Mark Ian Phillips
  • Patent number: 6360592
    Abstract: A method of detection and identification of pressure sensor faults in an electro-hydraulic braking system of the type comprising a brake pedal, respective braking devices connected to the vehicle wheels and which communicate with electronically controlled proportional control valves in order to apply hydraulic fluid under pressure to the braking devices, respective pressure sensors for measuring the hydraulic pressures at the individual braking devices, a hydraulic pump driven by an electric motor, a high pressure hydraulic pressure accumulator fed by the pump for the provision of hydraulic fluid under pressure which can be passed to the braking devices via the proportional control valves in order to apply hydraulic fluid under pressure to the braking devices in proportion to the driver's braking demand as sensed at the brake pedal, and a supply pressure sensor for monitoring the hydraulic pressure supplied to the electronically controlled proportional control valves.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: March 26, 2002
    Assignee: Lucas Industries public limited company
    Inventors: Alan Leslie Harris, Mark Leighton Howell, Mark Ian Phillips
  • Patent number: 6234585
    Abstract: An electronic braking system for a vehicle wherein control of the vehicle brakes is achieved by the use of electric control signals generated at a brake pedal in response to a driver's braking demand and an electronic controller which is adapted to control the supply of fluid under pressure from a power source to the brakes in accordance with said electronic signals corresponding to the driver's demand, the system being adapted to raise the brake pressure to a first predetermined level(jump-in) at a prescribed level of initial brake pedal travel and to release the brake pressure (reverse jump-in) as a second predetermined level, which is lower than at jump-in. The jump-in brake pressure level can be arranged to be variable with vehicle speed. In some cases, the brakes are arranged to be prefilled to a low pressure at a low pressure at an early stage in the pedal travel and then maintained at that low level until jump-in is triggered, whereupon the braking pressure is raised to the jump-in level.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: May 22, 2001
    Inventors: Alan Leslie Harris, Mark Leighton Howell, Simon David Stevens
  • Patent number: 6074019
    Abstract: A vehicle hydraulic braking system of the brake-by-wire type is disclosed in which proportional solenoid-operated valves (12, 13) are adapted to control the pressure in wheel brake actuators of the brakes (8, 9) on a single axle of a vehicle, and a balance valve (20) is provided to enable individual hydraulic brake circuits to be hydraulically connected so that the pressure applied to each brake is guaranteed to be substantially the same, a first one (13) of the proportional valves (12, 13) is adapted to be isolated so that the hydraulic circuit is fed by a second, single, proportional valve (12). Applying both brakes under the control of a single proportional valve ensures that any fluid leakages are balanced since substantially equal brake-applying pressures are generated.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: June 13, 2000
    Assignee: Lucas Industries public limited company
    Inventors: Mark Ian Phillips, Alan Leslie Harris, Mark Leighton Howell, Peter Martin, Karl Friedrich Worsdorfer