Patents by Inventor Mark McMasters

Mark McMasters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7836597
    Abstract: An structure and method of manufacturing a microstructure for use in a heat exchanger is disclosed. The heat exchanger comprises a manifold layer and an microstructured region. The manifold layer comprises a structure to deliver fluid to the microstructured region. The microstructured region is formed from multiple windowed layers formed from heat conductive layers through which a plurality of microscaled apertures have been formed by a wet etching process. The plurality of windowed layers are then coupled together to form a composite microstructure.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: November 23, 2010
    Assignee: Cooligy Inc.
    Inventors: Madhav Datta, Mark McMaster, Rick Brewer, Peng Zhou, Paul Tsao, Girish Upadhaya, Mark Munch
  • Patent number: 7832222
    Abstract: A portable recovery unit for automatically filling a background tank of blended refrigerant includes a main tank for holding recovered refrigerant from a vehicle A/C system which has a first chemical composition, and an auxiliary tank for holding an auxiliary supply of fresh refrigerant which has a second refrigerant composition. The auxiliary tank is arranged in fluid communication with the main tank so that fluid can be transferred from the auxiliary tank to the main tank. An electronic controller controls the flow of fluid from the auxiliary tank to the main tank. A refrigerant identifier is coupled to the main tank to sample and analyze the refrigerant in the main tank in order to determine the chemical composition of the refrigerant in the main tank, so the refrigerant in the main tank can be purified to an acceptable level based on that analysis.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: November 16, 2010
    Assignee: SPX Corporation
    Inventor: Mark McMasters
  • Patent number: 7746634
    Abstract: The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: June 29, 2010
    Assignee: Cooligy Inc.
    Inventors: James Hom, Hae-won Choi, Tien Chih (Eric) Lin, Douglas E. Werner, Norman Chow, Adrian Correa, Brandon Leong, Sudhakar Gopalakrishnan, Richard Grant Brewer, Mark McMaster, Girish Upadhya
  • Publication number: 20100154442
    Abstract: A refrigerant recovery machine having two opposed and off-set pistons and its use are provided. The pistons are received in cylinders that are able to move depending on the alignment of the pistons. The two pistons in the compressor allow more volume of refrigerant than a single piston and because they are opposed and off-set allows for more even load on the motor.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Michael Steven Schoenoff, Mark McMasters
  • Publication number: 20100035024
    Abstract: A ceramic assembly includes one or more electrically and thermally conductive pads to be thermally coupled to a heat generating device, each conductive pad is electrically isolated from each other. The ceramic assembly includes a ceramic layer to provide this electrical isolation. The ceramic layer has high thermal conductivity and high electrical resistivity. A top surface and a bottom surface of the ceramic layer are each bonded to a conductive layer, such as copper, using an intermediate joining material. A brazing process is performed to bond the ceramic layer to the conductive layer via a joining layer. The joining layer is a composite of the joining material, the ceramic layer, and the conductive layer. The top conductive layer and the joining layer are etched to form the electrically isolated conductive pads. The conductive layers are bonded to the ceramic layer using a bare ceramic approach or a metallized ceramic approach.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 11, 2010
    Applicant: COOLIGY INC.
    Inventors: Madhav Datta, Mark McMaster
  • Publication number: 20100032143
    Abstract: A microheat exchanging assembly is configured to cool one or more heat generating devices, such as integrated circuits or laser diodes. The microheat exchanging assembly includes a first ceramic assembly thermally coupled to a first surface, and in cases, a second ceramic assembly thermally coupled to a second surface. The ceramic assembly includes one or more electrically and thermally conductive pads to be thermally coupled to a heat generating device, each conductive pad is electrically isolated from each other. The ceramic assembly includes a ceramic layer to provide this electrical isolation. A top surface and a bottom surface of the ceramic layer are each bonded to a conductive layer, such as copper, using an intermediate joining material. A brazing process is performed to bond the ceramic layer to the conductive layer via a joining layer. The joining layer is a composite of the joining material, the ceramic layer, and the conductive layer.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 11, 2010
    Applicant: Cooligy Inc.
    Inventors: Madhav Datta, Brandon Leong, Mark McMaster
  • Patent number: 7599184
    Abstract: Liquid-based cooling solutions used to transfer heat produced by one or more heat generating devices from one or more electronics servers to the ambient. Each electronics server includes one or more heat generating devices. Integrated onto each electronics server is a liquid based cooling system. Each liquid based cooling system includes a server pump and one or more microchannel cold plates (MCP) coupled together via fluid lines. The liquid based cooling system for each electronics server includes a rejector plate configured with micro-channels. The MCPs, the server pump and the rejector plate form a first closed loop. The rejector plate is coupled to a chassis cold plate via a thermal interface material. In a multiple electronics server configuration, the rejector plates for each of the electronics servers are coupled to the chassis cold plate configured with fluid channels which are coupled via fluid lines to a liquid-to-air heat exchanging system to form a second closed loop.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: October 6, 2009
    Assignee: Cooligy Inc.
    Inventors: Girish Upadhya, Mark Munch, Norman Chow, Paul Tsao, Douglas E. Werner, Mark McMaster, Frederic Landry, Ian Spearing, Tim Schrader
  • Publication number: 20090241560
    Abstract: A refrigerant recovery unit that diverts blended refrigerant withdrawn out of a refrigerant system to an external tank outside the refrigerant recovery unit for reclamation includes a recovery circuit coupled on one end to the refrigerant system and coupled on another end to the external tank, a controller in communication with the recovery circuit for controlling a transfer of the refrigerant withdrawn from the refrigerant system to the external tank, and a valve operatively engaged with the controller and the recovery circuit and operable to transfer the refrigerant withdrawn from the refrigerant system to the external tank for recycling or reclamation.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: SPX Corporation (a Delaware corporation)
    Inventors: Gary Murray, Mark McMasters, William Brown
  • Publication number: 20090225514
    Abstract: A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes one or more heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes swivel joints configured to provide a fluid path between the cooling door and the frame. In this manner, the frame remains in a fixed position, while the cooling door is configured to rotate relative to the frame so as to open and close, while maintaining the fluid path through the swivel joint.
    Type: Application
    Filed: November 14, 2008
    Publication date: September 10, 2009
    Inventors: Adrian Correa, Tien Chih (Eric) Lin, James Hom, Gregory Shiomoto, Norman Chow, Brandon Leong, Richard Grant Brewer, Douglas E. Werner, Mark McMaster
  • Publication number: 20090225513
    Abstract: A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes one or more heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes swivel joints configured to provide a fluid path between the cooling door and the frame. In this manner, the frame remains in a fixed position, while the cooling door is configured to rotate relative to the frame so as to open and close, while maintaining the fluid path through the swivel joint.
    Type: Application
    Filed: November 14, 2008
    Publication date: September 10, 2009
    Inventors: Adrian Correa, Tien Chih (Eric) Lin, James Hom, Gregory Shiomoto, Norman Chow, Brandon Leong, Richard Grant Brewer, Douglas E. Werner, Mark McMaster
  • Publication number: 20090188271
    Abstract: A refrigerant recovery unit is provided that can clear oil from an oil inject path in order to prepare the unit to switch over to a different kind of oil. The refrigerant recovery unit includes an oil inject circuit that receives an oil from the oil bottle into the refrigerant system. The refrigerant recovery circuit is coupled in fluid communication with the oil inject circuit. The refrigerant recovery circuit is operable to receive and transfer a fluid drawn through the oil inject circuit. A controller is operatively connected to the refrigerant recovery circuit and to the oil inject circuit so that as the fluid is drawn through the oil inject circuit a quantity of the oil in the oil inject circuit is removed.
    Type: Application
    Filed: October 20, 2008
    Publication date: July 30, 2009
    Inventors: Mark McMasters, Gary P. Murray, William Brown
  • Publication number: 20090188263
    Abstract: A refrigerant recovery unit is provided that can recover and recharge refrigerant. The unit is further configured with a pair of service hoses and a refrigerant control circuit operable to receive and transport the refrigerant between the hoses and the storage vessel and to process the refrigerant to substantially remove contaminants from the refrigerant. A fluid connector is provided in fluid communication with the hoses to enable the refrigerant to flow between the hoses and to establish a closed loop through the refrigerant control circuit, and a controller is operatively connected to the refrigerant control circuit and configured to control a flow of the refrigerant through the refrigerant control circuit and through the fluid connector.
    Type: Application
    Filed: October 9, 2008
    Publication date: July 30, 2009
    Inventors: Gary P. Murray, Mark McMasters, William Brown
  • Publication number: 20090158756
    Abstract: A refrigerant recovery unit for accurately filling a refrigerant system with a refrigerant is provided which includes a storage vessel for holding refrigerant, sensors to assist in determining the pressure of the refrigerant in the storage vessel, a controller to control the flow of refrigerant from the storage vessel to the refrigerant system to be serviced, and a heating device to heat the refrigerant, which is activated only if heating is required, as determined by data received by the controller.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Inventors: William Brown, Mark McMasters
  • Patent number: 7539020
    Abstract: A mounting system provides mechanisms and form factors for bringing a heat exchanger from a server rack into thermal contact with a heat exchanger from a electronics server. To ensure good thermal contact, pressure is applied between the two heat exchangers, the rejector plate and the chassis cold plate. The mounting mechanism used to engage and disengage the heat exchangers is configured to isolate the force applied to the two heat exchangers. The mounting mechanism includes an interlocking mechanism that prevents transfer of the applied force to the rest of the electronics server. Without isolating this force, the force is applied to the electronics server and/or the rack chassis, possibly disconnecting the electrical connections between the electronics server and the rack, as well as providing mechanical stress to the electronics server and the rack chassis.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: May 26, 2009
    Assignee: Cooligy Inc.
    Inventors: Norman Chow, Paul Tsao, Douglas E. Werner, Mark McMaster, Girish Upadhya, Frederic Landry, Ian Spearing, Tim Schrader
  • Publication number: 20090078642
    Abstract: A filter in some embodiments of the invention includes: a housing defining an interior chamber substantially sealed from outside of the housing; a valve located in the chamber biased to a first position where the valve maintains a seal between the interior chamber and outside of the housing; and an anchor fixed to the housing defining a surface for a spring to urge against and bias the valve to the first position and be compressed against when a receiver enters into the housing a moves the valve to a second position, the anchor defining, at least in part, flow paths wherein a pressurized fluid within the housing can communicate with an interior of the receiver to equalize a pressure within the chamber and the interior of the receiver; and a nipple attached to the housing having an interior passageway configured to permit the receiver to pass through in a substantially sealed manner. A method of attaching a filter to a filter receiver is also provided.
    Type: Application
    Filed: September 20, 2007
    Publication date: March 26, 2009
    Inventor: Mark McMasters
  • Publication number: 20090044928
    Abstract: An apparatus for preventing cracking of a liquid system includes an enclosure and one or more compressible objects immersed in the enclosure. According to the present invention, the enclosure is configured to cause a fluid to begin to freeze at a location in the enclosure, and for freezing to advance towards the one or more compressible objects.
    Type: Application
    Filed: October 25, 2007
    Publication date: February 19, 2009
    Inventors: Girish Upadhya, Richard Grant Brewer, Mark McMaster
  • Publication number: 20090046423
    Abstract: The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 19, 2009
    Inventors: James Hom, Hae-won Choi, Tien Chih (Eric) Lin, Douglas E. Werner, Norman Chow, Adrian Correa, Brandon Leong, Sudhakar Gopalakrishnan, Richard Grant Brewer, Mark McMaster, Girish Upadhya
  • Publication number: 20080210405
    Abstract: An structure and method of manufacturing a microstructure for use in a heat exchanger is disclosed. The heat exchanger comprises a manifold layer and an microstructured region. The manifold layer comprises a structure to deliver fluid to the microstructured region. The microstructured region is formed from multiple windowed layers formed from heat conductive layers through which a plurality of microscaled apertures have been formed by a wet etching process. The plurality of windowed layers are then coupled together to form a composite microstructure.
    Type: Application
    Filed: January 6, 2006
    Publication date: September 4, 2008
    Inventors: Madhav Datta, Mark McMaster, Rick Brewer, Peng Zhou, Paul Tsao, Girish Upadhaya, Mark Munch
  • Patent number: 7301773
    Abstract: A heat collection apparatus is mounted to the heat source using a gimbal plate, which includes a gimbal joint. The gimbal joint enables application of a retaining force to the heat collection apparatus as a single-point load. The retaining force is applied along a vector that is collinear to the face-centered normal vector of the thermal interface of the heat source. This results in a balanced and centered application of the retaining force over the thermal interface area. The gimbal plate is mounted directly to a circuit board using spring means. The spring means regulate the amount of mating force directed through the gimbal joint to the heat collection device. Because the gimbal joint is rotation-compliant, the two mating faces making up the thermal interface are forced into a parallel mate. In this manner, a high performance TIM interface is generated.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: November 27, 2007
    Assignee: Cooligy Inc.
    Inventors: Richard Grant Brewer, Paul Tsao, Richard Herms, Mark Munch, Mark McMaster, Dave Corbin
  • Patent number: 7293423
    Abstract: An apparatus and method of controlling freezing in a liquid system is disclosed. The apparatus includes a heat exchanger having a initial zone characterized by a surface area to volume ratio. The apparatus also includes means for initiating freezing of a fluid from the initial zone to facilitate volume expansion during freezing in the direction of a final zone characterized by a final zone surface area to volume ratio. The apparatus can further include a plurality of zones located between the initial zone and the final zone, wherein a zone surface area to volume ratio is calculated for each zone. Preferably, the zone surface area to volume ratio of each zone progressively decreases from the initial zone in the direction of the final zone. Preferably, the final freezing zone has the lowest surface area to volume ratio and has sufficient elasticity to accommodate the volume expansion of all the fluid that has frozen from the initial zone.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: November 13, 2007
    Assignee: Cooligy Inc.
    Inventors: Girish Upadhya, Richard Grant Brewer, Mark McMaster