Patents by Inventor Mark Mescher

Mark Mescher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210162416
    Abstract: A microfluidic device for modeling a tumor-immune microenvironment can include a multiwell plate defining a plurality of microenvironment units fluidically coupled with a plurality of wells. Each microenvironment unit of the plurality of microenvironment units can include one or more compartments. Each microenvironment unit can include a trapping feature positioned within the one or more compartments. The trapping feature can be defined by a portion of at least one of a sidewall or a floor of the one or more compartments. The trapping feature can restrict movement of a tissue sample introduced into the one or more compartments and to allow fluid to flow past the tissue sample. The microfluidic device can include a plurality of micropumps each coupled with a respective well and configured to control movement of a respective fluid sample through each respective well.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 3, 2021
    Inventors: Jeffrey Borenstein, Nathan Moore, Daniel Doty, Timothy Haggerty, Joseph Charest, Alla Gimbel, Vienna Mott, Brett Isenberg, Hesham Azizgolshani, Brian Cain, Mark Mescher
  • Publication number: 20210155889
    Abstract: A system for cell bioprocessing and cell therapy manufacturing can include a series of microfluidic modules to enable continuous-flow end-to-end cell bioprocessing. Each module can implement a different technology, and the modules can be coupled to one another to perform various unit operations in the cell bioprocessing or cell-therapy manufacturing chain to enable direct processing of a blood or blood product sample. The system can automatically and continuously process the sample into genetically-modified lymphocytes or T cells for cellular therapy. The technologies implemented by each module in the system can include any combination of microfluidic acoustophoresis, microfluidic acoustophoretic media exchange or cell washing, and continuous-flow microfluidic electrotransfection. Modules implementing these microfluidic technologies can be interconnected with plastic tubing or with a custom manifold.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 27, 2021
    Inventors: Vishal Tandon, Jeffrey Borenstein, Jason Fiering, Jenna Balestrini, Heena Mutha, Jonathan Robert Coppeta, Mark Mescher
  • Patent number: 10160944
    Abstract: Fluid circulation and leveling systems and methods of using the same are described. A fluid circulation system includes a fluid mixing chamber and open fluid chambers in fluid communication with the fluid mixing chamber. Each open fluid chamber includes a microfluidic fluid leveling conduit with an orifice disposed in the open fluid chamber at a minimum fluid level associated with a corresponding minimum fluid volume. A controller causes a first pump to generate a first direction of fluid flow during a first time period between the open fluid chambers, and causes the first pump to generate a second direction of fluid flow during a second time period between the first and second open fluid chambers. The controller also causes a second pump to generate a flow of fluid during a third time period from one of the first and second open fluid chambers into the fluid mixing chamber.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: December 25, 2018
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jonathan Coppeta, Brett Isenberg, Mark Mescher
  • Publication number: 20160040112
    Abstract: Fluid circulation and leveling systems and methods of using the same are described. A fluid circulation system includes a fluid mixing chamber and open fluid chambers in fluid communication with the fluid mixing chamber. Each open fluid chamber includes a microfluidic fluid leveling conduit with an orifice disposed in the open fluid chamber at a minimum fluid level associated with a corresponding minimum fluid volume. A controller causes a first pump to generate a first direction of fluid flow during a first time period between the open fluid chambers, and causes the first pump to generate a second direction of fluid flow during a second time period between the first and second open fluid chambers. The controller also causes a second pump to generate a flow of fluid during a third time period from one of the first and second open fluid chambers into the fluid mixing chamber.
    Type: Application
    Filed: August 5, 2015
    Publication date: February 11, 2016
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jonathan Coppeta, Brett Isenberg, Mark Mescher
  • Patent number: 7867194
    Abstract: An implantable drug delivery apparatus for delivering a drug into a bodily fluid in a body cavity of a patient over a period of time includes a variable-volume vessel defining a working chamber for receiving a drug and recirculating a therapeutic fluid. The fluid can contain a bodily fluid, such as, for example, perilymph, and a drug. The device allows for the controlled delivery of the therapeutic fluid to a predetermined location in the bodily cavity of the patient, such as, for example, a cochlea of a human ear.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: January 11, 2011
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jason Fiering, Mark Mescher
  • Publication number: 20080009836
    Abstract: An implantable drug delivery apparatus for delivering a drug into a bodily fluid in a body cavity of a patient over a period of time includes a variable-volume vessel defining a working chamber for receiving a drug and recirculating a therapeutic fluid. The fluid can contain a bodily fluid, such as, for example, perilymph, and a drug. The device allows for the controlled delivery of the therapeutic fluid to a predetermined location in the bodily cavity of the patient, such as, for example, a cochlea of a human ear.
    Type: Application
    Filed: August 11, 2006
    Publication date: January 10, 2008
    Inventors: Jason Fiering, Mark Mescher
  • Publication number: 20070240294
    Abstract: A longitudinal mode resonator that includes a substrate and a bar that is suspended relative to the substrate. The bar is suspended such that it is free to expand and contract longitudinally in response to the application of an electric field across its thickness. The expansion and contraction of the bar achieves resonance in response to the field having a frequency substantially equal to the fundamental frequency of the bar.
    Type: Application
    Filed: October 19, 2005
    Publication date: October 18, 2007
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Amy Duwel, David Carter, Mark Mescher, Mathew Varghese, Bernard Antkowiak, Marc Weinberg
  • Publication number: 20060167435
    Abstract: The invention provides a low-profile, dome-shaped body for attachment to a scleral surface of an eye and defining an internal cavity for receiving a drug or other pharmaceutically active agent. The device has an opening for controllably delivering the drug into the eye at therapeutically effective concentrations over a prolonged period of time. When attached, the device does not affect or otherwise restrict movement of the eye. Features of the invention include an optional drug inlet port and puncture guard, both designed for refilling the device while preventing a needle inserted through the inlet port from contacting the sclera.
    Type: Application
    Filed: February 17, 2004
    Publication date: July 27, 2006
    Inventors: Anthony Adamis, Joan Miller, Mark Mescher, Evangelos Gragoudas, Jeffrey Borenstein
  • Publication number: 20060051883
    Abstract: A suspension of a chip-scale device is accomplished using a suspension frame and at least one first tether. The chip-scale suspension frame defines a first plane and an opening through the suspension frame. At least one first tether crosses the opening at a first angle relative to the first plane and can be used to position the chip-scale device at least partially within the opening.
    Type: Application
    Filed: July 13, 2005
    Publication date: March 9, 2006
    Inventors: Mark Mescher, Mathew Varghese, Marc Weinberg, Thomas Marinis, Joseph Soucy
  • Publication number: 20060030837
    Abstract: An implantable drug delivery apparatus for delivering a drug into a bodily fluid in a body cavity of a patient over a period of time, which includes a hollow member that defines at least one lumen for facilitating a unidirectional recirculating flow of a therapeutic fluid through the lumen. The fluid can contain a bodily fluid, such as, for example, perilymph, and a drug. The apparatus also includes a pump, for example a single unidirectional pump, to control the flow rate of the therapeutic fluid through the hollow member, and an interface member in communication with at least one lumen of the hollow member. The device thus allows for the controlled delivery of the therapeutic fluid to a predetermined location in the bodily cavity of the patient, such as, for example, a cochlea of a human ear.
    Type: Application
    Filed: January 28, 2005
    Publication date: February 9, 2006
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael McKenna, Jason Fiering, Mark Mescher, Sharon Kujawa, William Sewell, Anthony Mikulec
  • Publication number: 20050238506
    Abstract: A variable, closed-loop apparatus for regulating a microfluidic flow that employs a low-power deflection assembly, which is surface-mounted over a flexible membrane overlying a chamber integrated into a microfabricated platform. A flexible membrane, moveable between two positions, sealingly overlies the chamber. One of the positions of the membrane restricts the flow through the chamber to a greater degree than the other position. A deflection assembly disposed on the substrate over the membrane unidirectionally deflects the membrane, thereby regulating the flow through the chamber.
    Type: Application
    Filed: June 28, 2005
    Publication date: October 27, 2005
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Mark Mescher, Jason Fiering, Christopher Dube