Patents by Inventor Mark Olen Bodie

Mark Olen Bodie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6549842
    Abstract: The present invention provides a method of estimating a coefficient of adhesion between a road surface and a plurality of tires disposed on a vehicle. An estimated coefficient of adhesion for each of the plurality of tires is provided. First values of longitudinal and lateral forces on the tires are determined from a first set of vehicle dynamic parameters requiring no explicit knowledge of the coefficient of adhesion; and second values of the same forces are determined from a second set of vehicle parameters in an analytic tire model including the estimated value of the coefficient of adhesion. Differences between the first and the second values of the forces on the tires are determined in the longitudinal and lateral directions. Longitudinal and lateral adaptation speeds are determined for each of the plurality of tires; and a coefficient of adhesion adjustment for each of the plurality of tires is estimated from the differences and the adaptation speeds.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: April 15, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Aleksander Boguslaw Hac, Mark Olen Bodie
  • Patent number: 6505108
    Abstract: Controllable dampers are used to improve vehicle responses and stability during severe vehicle handling maneuvers. A total handling damping value for the vehicle is derived, preferably from the greatest of a yaw rate error value, a lateral acceleration value and a time derivative of lateral acceleration value. In addition, a control ratio of front axle roll damping to total roll damping is derived, preferably from the yaw rate error value, an oversteer/understeer indication and possibly vehicle speed. From these values, handling damping values are derived for each wheel of the vehicle and blended with damping values for the same wheels derived from suspension component movement to determine a corner damping command for each controllable damper. Preferably, the damping values derived from suspension component movement are shifted away from damping control of the vehicle body toward handling damping control when yaw rate error is large in magnitude.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: January 7, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Mark Olen Bodie, Aleksander Boguslaw Hac
  • Publication number: 20020128760
    Abstract: Controllable dampers are used to improve vehicle responses and stability during severe vehicle handling maneuvers. A total handling damping value for the vehicle is derived, preferably from the greatest of a yaw rate error value, a lateral acceleration value and a time derivative of lateral acceleration value. In addition, a control ratio of front axle roll damping to total roll damping is derived, preferably from the yaw rate error value, an oversteer/understeer indication and possibly vehicle speed. From these values, handling damping values are derived for each wheel of the vehicle and blended with damping values for the same wheels derived from suspension component movement to determine a corner damping command for each controllable damper. Preferably, the damping values derived from suspension component movement are shifted away from damping control of the vehicle body toward handling damping control when yaw rate error is large in magnitude.
    Type: Application
    Filed: September 26, 2001
    Publication date: September 12, 2002
    Inventors: Mark Olen Bodie, Aleksander Boguslaw Hac
  • Patent number: 5707115
    Abstract: In a vehicle with a first set of first and second wheels coupled to an electric drive system capable of providing regenerative braking and a second set of third and fourth wheels, wherein the vehicle dynamically adjusts a brake proportioning between the first and second sets responsive to a determined wheel speed difference between the first and second sets, the improvement comprising a regenerative braking control method according to the steps of: measuring first, second, third and fourth speeds of the first, second, third and fourth wheels; for each wheel of one of the first and second sets, determining a set-off value inversely relational to a commanded brake torque and a wheel deceleration; determining modified wheel speeds for each wheel of said one of the first and second sets responsive to the wheel speeds and the set-off values; and determining the wheel speed difference between the first and second sets responsive to the modified wheels speeds of said one of the first and second sets and the wheel sp
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: January 13, 1998
    Assignee: General Motors Corporation
    Inventors: Mark Olen Bodie, Kamal Naif Majeed