Patents by Inventor Mark Oskotsky

Mark Oskotsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11860345
    Abstract: A mid-wave infrared (MWIR) discrete zoom lens for use with remote surveillance and identification having a dual focal length of 9 and 6.39 inches and F #2.8 and F #2, respectively. In one case, a full field of view is about 30.8 degrees for a 9 inch focal length configuration and about 43 degrees for a 6.39 inch focal length configuration. The lens is corrected for monochromatic and chromatic aberrations over the wavelength range 5100 nm-3300 nm. The focal plane may constitute a pixel array consisting of MWIR sensitive material (e.g. InSb, HgCdTe, nBn, SLS, etc.) for use in high-resolution, wide-area imaging applications.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: January 2, 2024
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mark Oskotsky, Daniel Engheben, Vincent Lipari, Michael Russo, Jr.
  • Publication number: 20220342189
    Abstract: A mid-wave infrared (MWIR) discrete zoom lens for use with remote surveillance and identification having a dual focal length of 9 and 6.39 inches and F #2.8 and F #2, respectively. In one case, a full field of view is about 30.8 degrees for a 9 inch focal length configuration and about 43 degrees for a 6.39 inch focal length configuration. The lens is corrected for monochromatic and chromatic aberrations over the wavelength range 5100 nm-3300 nm. The focal plane may constitute a pixel array consisting of MWIR sensitive material (e.g. InSb, HgCdTe, nBn, SLS, etc.) for use in high-resolution, wide-area imaging applications.
    Type: Application
    Filed: April 23, 2021
    Publication date: October 27, 2022
    Applicant: BAE SYSTEMS Information and Electronic Systems Integration Inc.
    Inventors: Mark Oskotsky, Daniel Engheben, Vincent Lipari, Michael Russo, JR.
  • Patent number: 9297987
    Abstract: A wide field optically athermalized orthoscopic lens system includes, in order from object to image, a first lens having a negative power, a second lens having a positive power, a third lens group having a positive power, a fourth lens having a positive power and a fifth lens having a negative power. The third lens group includes two lenses having, in order, a first lens with positive power and a second lens with negative power. The powers, shapes, Abbe dispersion values and temperature coefficients of refractive indices of the lenses are selected such that the lens system is athermalized, orthoscopic and achromatized over a wide (e.g. >140° C.) temperature range.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: March 29, 2016
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mark Oskotsky, Shawn Reven, Michael J. Russo, Jr.
  • Publication number: 20140376106
    Abstract: A wide field optically athermalized orthoscopic lens system includes, in order from object to image, a first lens having a negative power, a second lens having a positive power, a third lens group having a positive power, a fourth lens having a positive power and a fifth lens having a negative power. The third lens group includes two lenses having, in order, a first lens with positive power and a second lens with negative power. The powers, shapes, Abbe dispersion values and temperature coefficients of refractive indices of the lenses are selected such that the lens system is athermalized, orthoscopic and achromatized over a wide (e.g. >140° C.) temperature range.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 25, 2014
    Inventors: Mark Oskotsky, Shawn Reven, Michael J. Russo, JR.
  • Patent number: 8817392
    Abstract: A wide field optically athermalized orthoscopic lens system includes, in order from object to image, a first lens having a negative power, a second lens having a positive power, a third lens group having a positive power, a fourth lens having a positive power and a fifth lens having a negative power. The third lens group includes two lenses having, in order, a first lens with positive power and a second lens with negative power. The powers, shapes, Abbe dispersion values and temperature coefficients of refractive indices of the lenses are selected such that the lens system is athermalized, orthoscopic and achromatized over a wide (e.g. >140° C.) temperature range.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: August 26, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mark Oskotsky, Shawn Reven, Michael J. Russo, Jr.
  • Publication number: 20120147483
    Abstract: A wide field optically athermalized orthoscopic lens system includes, in order from object to image, a first lens having a negative power, a second lens having a positive power, a third lens group having a positive power, a fourth lens having a positive power and a fifth lens having a negative power. The third lens group includes two lenses having, in order, a first lens with positive power and a second lens with negative power. The powers, shapes, Abbe dispersion values and temperature coefficients of refractive indices of the lenses are selected such that the lens system is athermalized, orthoscopic and achromatized over a wide (e.g. >140° C.) temperature range.
    Type: Application
    Filed: March 23, 2011
    Publication date: June 14, 2012
    Inventors: Mark Oskotsky, Shawn Reven, Michael J. Russo, JR.
  • Patent number: 7944559
    Abstract: A hyperspectral imaging system has fore-optics including primary, secondary and tertiary fore-optics mirrors, and an imaging spectrometer including primary, secondary and tertiary spectrometer mirrors. Light from a distant object is collected by the primary fore-optics mirror, and the tertiary fore-optics mirror forms an intermediate object image at an entrance side of a spectrometer slit. The spectrometer mirrors are configured so that light from an exit side of the slit is diffracted by a grating on the secondary mirror, and an image representing spectral and spatial components of the object is formed by the tertiary spectrometer mirror on a focal plane array. The surface of each mirror of the fore-optics and the spectrometer has an associated axis of symmetry. The mirrors are aligned so that their associated axes coincide to define a common system axis, thus making the imaging system easier to assemble and align in relation to prior systems.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: May 17, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mark Oskotsky, Michael J. Russo, Jr.
  • Patent number: 7834979
    Abstract: An off-axis catadioptric projection optical systems for use in lithography tools for processing modulated light used to form an image on a substrate is provided. The optical system includes an off-axis mirror segment, a fold mirror, a relay, an aperture stop and a refractive lens group. Modulated light is transmitted through the system to form an image on a substrate. The projection system includes an off-axis mirror segment, an aperture stop and a refractive lens group. Alternatively, the projection system includes an off-axis mirror segment, a negative refractive lens group, a concave mirror, a relay, an aperture stop, and a refractive lens group.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: November 16, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Stanislav Smirnov, Mark Oskotsky
  • Publication number: 20100238440
    Abstract: A hyperspectral imaging system has fore-optics including primary, secondary and tertiary fore-optics mirrors, and an imaging spectrometer including primary, secondary and tertiary spectrometer mirrors. Light from a distant object is collected by the primary fore-optics mirror, and the tertiary fore-optics mirror forms an intermediate object image at an entrance side of a spectrometer slit. The spectrometer mirrors are configured so that light from an exit side of the slit is diffracted by a grating on the secondary mirror, and an image representing spectral and spatial components of the object is formed by the tertiary spectrometer mirror on a focal plane array. The surface of each mirror of the fore-optics and the spectrometer has an associated axis of symmetry. The mirrors are aligned so that their associated axes coincide to define a common system axis, thus making the imaging system easier to assemble and align in relation to prior systems.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 23, 2010
    Inventors: Mark Oskotsky, Michael J. Russo, JR.
  • Patent number: 7768642
    Abstract: An imaging catadioptric spectrometer using a Mangin type lens and pupil lens adjacent to a grating. Electromagnetic radiation received by aperture slits is directed to a reflective portion of a Mangin type lens and redirected to a pupil adjacent a diffraction grating. Diffracted light is transmitted through a refractive portion of the Mangin type lens and through a corrector lens to image the spectral components of electromagnetic radiation onto a detector. The detector may be an enhanced detector utilizing an array of smaller spaced detectors. By balancing the powers of the lens elements, a single optical material may be used. In one embodiment, multiple aperture slits are spaced apart and decentered with respect to the optical axis permitting collection of opposing diffraction orders on two detectors. A wide field of view having a low F number is obtained with an operating wavelength range in the infrared from approximately 7.5 to 13.5 microns.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: August 3, 2010
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mark Oskotsky, Michael J. Russo, Jr., Dipak Banerjee
  • Publication number: 20090153954
    Abstract: The present invention is directed to off-axis catadioptric projection optical systems for use in lithography tools for processing modulated light used to form an image on a substrate, such as a semiconductor wafer or flat panel display. In one embodiment the optical system includes an off-axis mirror segment, a fold mirror, a relay, an aperture stop and a refractive lens group. Modulated light is transmitted through the system to form an image on a substrate. In a second embodiment the projection system includes an off-axis mirror segment, an aperture stop and a refractive lens group. In a third embodiment the projection system includes an off-axis mirror segment, a negative refractive lens group, a concave mirror, a relay, an aperture stop, and a refractive lens group. A method to produce a device using a lithographic apparatus including a projection system with an off-axis mirror segment as the first element in a projection optics system is also provided.
    Type: Application
    Filed: February 20, 2009
    Publication date: June 18, 2009
    Applicant: ASML Holding N.V.
    Inventors: Stanislav SMIRNOV, Mark Oskotsky
  • Patent number: 7511798
    Abstract: An off-axis catadioptric projection optical systems for use in lithography tools for processing modulated light used to form an image on a substrate is provided. In one embodiment the optical system includes an off-axis mirror segment, a fold mirror, a relay, an aperture stop and a refractive lens group. Modulated light is transmitted through the system to form an image on a substrate. In a second embodiment the projection system includes an off-axis mirror segment, an aperture stop and a refractive lens group. In a third embodiment the projection system includes an off-axis mirror segment, a negative refractive lens group, a concave mirror, a relay, an aperture stop, and a refractive lens group. A method to produce a device using a lithographic apparatus including a projection system with an off-axis mirror segment as the first element in a projection optics system is also provided.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: March 31, 2009
    Assignee: ASML Holding N.V.
    Inventors: Stanislav Smirnov, Mark Oskotsky
  • Publication number: 20080273244
    Abstract: An imaging catadioptric spectrometer using a Mangin type lens and pupil lens adjacent to a grating. Electromagnetic radiation received by aperture slits is directed to a reflective portion of a Mangin type lens and redirected to a pupil adjacent a diffraction grating. Diffracted light is transmitted through a refractive portion of the Mangin type lens and through a corrector lens to image the spectral components of electromagnetic radiation onto a detector. The detector may be an enhanced detector utilizing an array of smaller spaced detectors. By balancing the powers of the lens elements, a single optical material may be used. In one embodiment, multiple aperture slits are spaced apart and decentered with respect to the optical axis permitting collection of opposing diffraction orders on two detectors. A wide field of view having a low F number is obtained with an operating wavelength range in the infrared from approximately 7.5 to 13.5 microns.
    Type: Application
    Filed: May 2, 2007
    Publication date: November 6, 2008
    Inventors: Mark Oskotsky, Michael J. Russo, Dipak Banerjee
  • Patent number: 7271965
    Abstract: A wideband, e.g., 550 nm to 940 nm, apochromatic lens system for use with an external aperture stop, includes first, second, and third optical groups having, in order, positive, negative, and positive powers. The first group includes four optical elements having, in order, negative, positive, negative, and positive powers. The second group includes one element of negative power; and the third group includes two elements each having positive power. In another embodiment for use with an internal stop, the system includes first, second, and third optical groups having, in order, positive, positive, and negative powers. The first group includes four optical elements having, in order, positive, negative, positive, and negative powers. The second group includes one element of positive power, and the third group includes one element of negative power. In either embodiment, all of the optical elements are formed from not more than three different types of glass material.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: September 18, 2007
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mark Oskotsky, Michael J. Russo, Jr.
  • Publication number: 20070146674
    Abstract: A system for microlithography comprises an illumination source; an illumination optical system including, in order from an objective side, (a) a first diffractive optical element that receives illumination from the illumination source, (b) a zoom lens, (c) a second diffractive optical element, (d) a condenser lens, (e) a relay lens, and (f) a reticle, and a projection optical system for imaging the reticle onto a substrate, wherein the system for microlithography provides a zoomable numerical aperture.
    Type: Application
    Filed: March 6, 2007
    Publication date: June 28, 2007
    Applicant: ASML Holding N.V.
    Inventors: Mark Oskotsky, Lev Ryzhikov, Scott Coston, James Tsacoyeanes, Walter Augustyn
  • Patent number: 7187430
    Abstract: A system for microlithography comprises an illumination source; an illumination optical system including, in order from an objective side, (a) a first diffractive optical element that receives illumination from the illumination source, (b) a zoom lens, (c) a second diffractive optical element, (d) a condenser lens, (e) a relay lens, and (f) a reticle, and a projection optical system for imaging the reticle onto a substrate, wherein the system for microlithography provides a zoomable numerical aperture.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: March 6, 2007
    Assignee: ASML Holding N.V.
    Inventors: Mark Oskotsky, Lev Ryzhikov, Scott Coston, James Tsacoyeanes, Walter Augustyn
  • Patent number: 7110082
    Abstract: A maskless lithography system including an illuminating system, a SLM having a non-linear shape (e.g., curved, concave, spherical, etc.), an exposure system, and a beam splitter that directs light from the illuminating system to the SLM and from the SLM to the exposure system. In some embodiments, an optical element can be located between the beam splitter and the SLM, possibly to correct for aberrations.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: September 19, 2006
    Assignee: ASML Holding N.V.
    Inventors: Stanislav Smirnov, Mark Oskotsky
  • Patent number: 7023525
    Abstract: An imaging apparatus according to one embodiment of the invention includes a programmable patterning structure configured to pattern a projection beam of radiation according to a desired pattern. The programmable patterning structure includes a plurality of separate patterning sub-elements, each sub-element being configured to generate a patterned sub-beam. At least one of the separate patterning sub-elements is configured to generate a patterned sub-beam whose cross-section contains regions of different intensities. The imaging apparatus also includes a combining structure configured to combine the plurality of patterned sub-beams into a single patterned image, and a projection system configured to project the patterned image onto a target portion of a substrate.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: April 4, 2006
    Assignee: ASML Netherlands B.V.
    Inventors: Arno Jan Bleeker, Pieter Willem Herman De Jager, Jason Douglas Hintersteiner, Borgert Kruizinga, Matthew Eugene McCarthy, Mark Oskotsky, Lev Ryzhikov, Lev Sakin, Stanislav Smirnov, Bart Snijders, Karel Diederick Van Der Mast, Huibert Visser
  • Publication number: 20060023191
    Abstract: The present invention is directed to off-axis catadioptric projection optical systems for use in lithography tools for processing modulated light used to form an image on a substrate, such as a semiconductor wafer or flat panel display. In one embodiment the optical system includes an off-axis mirror segment, a fold mirror, a relay, an aperture stop and a refractive lens group. Modulated light is transmitted through the system to form an image on a substrate. In a second embodiment the projection system includes an off-axis mirror segment, an aperture stop and a refractive lens group. In a third embodiment the projection system includes an off-axis mirror segment, a negative refractive lens group, a concave mirror, a relay, an aperture stop, and a refractive lens group. A method to produce a device using a lithographic apparatus including a projection system with an off-axis mirror segment as the first element in a projection optics system is also provided.
    Type: Application
    Filed: July 30, 2004
    Publication date: February 2, 2006
    Inventors: Stanislav Smirnov, Mark Oskotsky
  • Publication number: 20040263821
    Abstract: A system for microlithography comprises an illumination source; an illumination optical system including, in order from an objective side, (a) a first diffractive optical element that receives illumination from the illumination source, (b) a zoom lens, (c) a second diffractive optical element, (d) a condenser lens, (e) a relay lens, and (f) a reticle, and a projection optical system for imaging the reticle onto a substrate, wherein the system for microlithography provides a zoomable numerical aperture.
    Type: Application
    Filed: July 22, 2004
    Publication date: December 30, 2004
    Applicant: ASML Holding N.V.
    Inventors: Mark Oskotsky, Lev Ryzhikov, Scott Coston, James Tsacoyeanes, Walter Augustyn