Patents by Inventor Mark PASSLER

Mark PASSLER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220070622
    Abstract: A method and wireless devices (WDs) for geo-location of wireless devices are disclosed. According to one aspect, a method in a first WD includes: transmitting a sequence of ranging signals and receiving a plurality of ranging response signals from a second WD, the ranging response signals being responsive to the ranging signals. For each of the plurality of ranging response signals, a received sequence of bits is determined. A correlation between the received sequence of bits and an expected sequence of bits is determined. The method also includes determining a subset of the plurality of received sequences of bits deemed not to arise from noise, and determining the subset being based at least in part on the correlations. The method also includes determining a distance between the first WD and the second WD based at least in part on a plurality of received sequences in the subset.
    Type: Application
    Filed: July 20, 2021
    Publication date: March 3, 2022
    Inventors: Mark PASSLER, Graham K. SMITH, Ryan BUSSER, Olivia FERNANDEZ, Steven ROMANOW
  • Publication number: 20220057500
    Abstract: A method in a wireless device (WD) for determining a best-fit geo-location of a target station is described. The best-fit geo-location is determined using a plurality of round-trip times (RTTs). The target station is movable. The method includes assigning values to current target station parameters. The current target station parameters include a current location for the target station and movement parameters. A plurality of square residuals is determined based at least in part on the current target station parameters. Each square residual of the plurality of square residuals corresponds to one RTT. A minimum of a sum of squared residuals (SSR) is determined based at least on the plurality of square residuals. best-fit parameters are determined based at least in part on the determined minimum of the SSR. In addition, the best-fit geo-location of the target station is determined based at least on the best-fit parameters.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 24, 2022
    Inventors: Mark PASSLER, Steven ROMANOW
  • Patent number: 11249128
    Abstract: A method and computer for determining a ground coverage footprint of a beam of an antenna mounted above the ground are disclosed. A method includes determining the far projection distance based at least in part on beam width and tilt angle, the far projection distance being a lesser of: a first distance from the antenna to the ground of a 3 dB far projection; two times a second distance from the antenna to the ground of a 3 dB near projection; and a third distance from the antenna to the ground of a projection of the maximum antenna gain multiplied by the square root of two. A ground footprint of the beam is determined based at least in part on the determined far projection distance. The method further includes causing the antenna to be pointed based at least in part on the determined ground footprint of the beam of the antenna.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: February 15, 2022
    Assignee: SR Technologies, Inc.
    Inventors: Steven M. Romanow, Mark Passler, Graham K. Smith
  • Publication number: 20220035020
    Abstract: A method for determining a geo-location of a target station is provided. The method includes receiving a plurality of RTTs over a plurality of successive time intervals. Each successive time interval is equal to a predetermined amount of time. The plurality of RTTs is placed into a plurality of bins. Each bin has a predetermined time width and a count of RTTs placed in the bin. A bin with a highest count of RTTs (maxCb) and another bin with a next highest count of RTTs are selected and a maximum count ratio determined. The bin with maxCb to a maximum bin value is set based at least on a predetermined threshold of the maximum count ratio. During a next successive time interval, the RTTs that are placed in the bin that is set to the maximum bin value are selected to determine the geo-location of the target station.
    Type: Application
    Filed: January 19, 2021
    Publication date: February 3, 2022
    Inventors: Mark PASSLER, Steven ROMANOW, Graham SMITH
  • Publication number: 20210302566
    Abstract: A method, wireless device and measuring station are disclosed that determine the best fit geo-location of a target station. According to one aspect, a method includes, using a “Pass Filter” for minimization of the summation of squared miss probabilities SSMP that improves the fitting process of the measured data over the method of minimization of the summation of the squared residuals (SSR) in the presence of spurious measurements. A “Pass Filter” approach is disclosed that reduces the corruption of the fitting process by outlier data and still yields the same result in the limit of clean data as the classic summation of the squared residuals (SSR) method.
    Type: Application
    Filed: October 21, 2020
    Publication date: September 30, 2021
    Inventor: Mark PASSLER
  • Patent number: 11128989
    Abstract: A method, device and system are disclosed for geo-locating a device. In one embodiment, a first wireless transmitter/receiver pages a second wireless transmitter/receiver to establish a communication. A plurality of packets transmitted by the first wireless transmitter/receiver and transmitted by the second wireless transmitter/receiver are received by a wireless receiver. The reception time of packets transmitted by the first wireless transmitter/receiver and the second wireless transmitter/receiver is recorded. A time delay based at least in part on the recorded reception times of each packet is calculated, and a location of the second wireless device based on the calculated time delay is determined. A target location of the second wireless transmitter/receiver is determined based on a plurality of the determined locations of the second wireless transmitter/receiver.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: September 21, 2021
    Assignee: SR Technologies, Inc.
    Inventors: Joaquin Prendes, Alexander Vallejo, Steven Romanow, Mark Passler
  • Publication number: 20210025930
    Abstract: A method and computer for determining a ground coverage footprint of a beam of an antenna mounted above the ground are disclosed. A method includes determining the far projection distance based at least in part on beam width and tilt angle, the far projection distance being a lesser of: a first distance from the antenna to the ground of a 3 dB far projection; two times a second distance from the antenna to the ground of a 3 dB near projection; and a third distance from the antenna to the ground of a projection of the maximum antenna gain multiplied by the square root of two. A ground footprint of the beam is determined based at least in part on the determined far projection distance. The method further includes causing the antenna to be pointed based at least in part on the determined ground footprint of the beam of the antenna.
    Type: Application
    Filed: October 13, 2020
    Publication date: January 28, 2021
    Inventors: Steven M. ROMANOW, Mark PASSLER, Graham K. SMITH
  • Publication number: 20200389767
    Abstract: A method, device and system are disclosed for geo-locating a device. In one embodiment, a first wireless transmitter/receiver pages a second wireless transmitter/receiver to establish a communication. A plurality of packets transmitted by the first wireless transmitter/receiver and transmitted by the second wireless transmitter/receiver are received by a wireless receiver. The reception time of packets transmitted by the first wireless transmitter/receiver and the second wireless transmitter/receiver is recorded. A time delay based at least in part on the recorded reception times of each packet is calculated, and a location of the second wireless device based on the calculated time delay is determined. A target location of the second wireless transmitter/receiver is determined based on a plurality of the determined locations of the second wireless transmitter/receiver.
    Type: Application
    Filed: August 4, 2020
    Publication date: December 10, 2020
    Inventors: Joaquin PRENDES, Alexander VALLEJO, Steven Romanow, Mark PASSLER
  • Patent number: 10845403
    Abstract: A method and computer for determining a ground coverage footprint of a beam of an antenna mounted above the ground are disclosed. A method includes determining the far projection distance based at least in part on beam width and tilt angle, the far projection distance being a lesser of: a first distance from the antenna to the ground of a 3 dB far projection; two times a second distance from the antenna to the ground of a 3 dB near projection; and a third distance from the antenna to the ground of a projection of the maximum antenna gain multiplied by the square root of two. A ground footprint of the beam is determined based at least in part on the determined far projection distance. The method further includes causing the antenna to be pointed based at least in part on the determined ground footprint of the beam of the antenna.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: November 24, 2020
    Assignee: SR Technologies, Inc.
    Inventors: Steven M. Romanow, Mark Passler, Graham K. Smith
  • Patent number: 10847866
    Abstract: A method and computer for pointing a beam of a directional antenna located above ground is disclosed. A method includes receiving a beam width 2?, and determining an angle ?max where ?max+? is an angle for a projection of maximum signal strength on the ground. ?max is based on the beam width 2? and tilt angle ?. The method also includes determining an effective ground beam width defined by a total relative gain of the directional antenna and the above the ground to ground range being at half the maximum signal strength on the ground at angles above and below ?max. The method further includes determining a ground footprint of the beam based at least on part on the determined effective ground beam width, and causing the antenna to be pointed based at least in part on the determined ground footprint of the beam.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: November 24, 2020
    Assignee: SR Technologies, Inc.
    Inventors: Mark Passler, Graham K. Smith, Steven M. Romanow
  • Patent number: 10771927
    Abstract: A method, device and system are disclosed for geo-locating a device. In one embodiment, a first wireless transmitter/receiver pages a second wireless transmitter/receiver to establish a communication. A plurality of packets transmitted by the first wireless transmitter/receiver and transmitted by the second wireless transmitter/receiver are received by a wireless receiver. The reception time of packets transmitted by the first wireless transmitter/receiver and the second wireless transmitter/receiver is recorded. A time delay based at least in part on the recorded reception times of each packet is calculated, and a location of the second wireless device based on the calculated time delay is determined. A target location of the second wireless transmitter/receiver is determined based on a plurality of the determined locations of the second wireless transmitter/receiver.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: September 8, 2020
    Assignee: SR Technologies, Inc.
    Inventors: Joaquin Prendes, Alexander Vallejo, Steven Romanow, Mark Passler
  • Patent number: 10732253
    Abstract: A method and receiver for determination of angle of arrival in one or two planes of a beam received at an antenna array comprising at least two pairs of antenna elements are provided. In some embodiments, a method includes computing a pair of difference signals, each difference signal being computed from signals from a different one of the at least two pairs of antenna elements. The method further includes determining a directional angle of arrival of the beam in one plane based on the pair of difference signals.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: August 4, 2020
    Assignee: SR Technologies, Inc.
    Inventors: Graham K. Smith, Mark Passler
  • Publication number: 20200166630
    Abstract: A method and devices are disclosed for producing a RTT vector (RTV) that is based upon the change in an airborne measuring station position and the corresponding RTT results taken at known time intervals to a ground based target station. In one embodiment, the target station is an access point or station conforming to the IEEE 802.11 standard and the airborne measuring station 110 may also be a device that conforms to the IEEE 802.11 standard. The disclosed method enables the location of a target station to an accuracy in the order of, for example, less than one half degree of bearing within, for example, a period in the order of 5 seconds.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 28, 2020
    Inventor: Mark PASSLER
  • Publication number: 20200158852
    Abstract: A method and devices are disclosed for producing a differential RTT vector (RTV) that is based upon the relative change in an airborne measuring station velocity relative to the target wireless device based upon RTT measurements, the RTT measurements being taken at known time intervals to a ground based target station, and the velocity and heading of the airborne measuring station. In one embodiment, the target device is an access point or station conforming to the IEEE 802.11 standard and the airborne measuring station 110 may also be a device that conforms to the IEEE 802.11 standard. The disclosed method enables the quick determination of the location of a target station to an accuracy of, for example, in the order of one half degree of bearing within, for example, a period in the order of 5 seconds.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 21, 2020
    Inventor: Mark PASSLER
  • Patent number: 10623903
    Abstract: A method is disclosed that relates to estimating the temporal location of mobile ground based Wi-Fi stations by monitoring a multitude of ground based access points, using an airborne Wi-Fi monitoring device. The airborne monitoring station first identifies and locates ground based access points within the area of interest. The airborne monitoring station monitors the transmission of the ground based stations and access points in the said networks, in particular the probe response management frames, recording the access point and station addresses and the time of reception. The transmissions contain an address of a corresponding ground-based access point and the address of the ground-based mobile station. The airborne monitoring station then matches all the times of the probe responses corresponding to the each station address and together with the location of the access points computes the likely temporal track for each station.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: April 14, 2020
    Assignee: SR Technologies, Inc.
    Inventors: Mark Passler, Graham K. Smith
  • Publication number: 20190293703
    Abstract: A method and computer for determining a ground coverage footprint of a beam of an antenna mounted above the ground are disclosed. A method includes determining the far projection distance based at least in part on beam width and tilt angle, the far projection distance being a lesser of: a first distance from the antenna to the ground of a 3 dB far projection; two times a second distance from the antenna to the ground of a 3 dB near projection; and a third distance from the antenna to the ground of a projection of the maximum antenna gain multiplied by the square root of two. A ground footprint of the beam is determined based at least in part on the determined far projection distance. The method further includes causing the antenna to be pointed based at least in part on the determined ground footprint of the beam of the antenna.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 26, 2019
    Inventors: Steven M. ROMANOW, Mark PASSLER, Graham K. SMITH
  • Publication number: 20190296420
    Abstract: A method and computer for pointing a beam of a directional antenna located above ground is disclosed. A method includes receiving a beam width 2?, and determining an angle ?max where ?max+? is an angle for a projection of maximum signal strength on the ground. ?max is based on the beam width 2? and tilt angle ?. The method also includes determining an effective ground beam width defined by a total relative gain of the directional antenna and the above the ground to ground range being at half the maximum signal strength on the ground at angles above and below ?max. The method further includes determining a ground footprint of the beam based at least on part on the determined effective ground beam width, and causing the antenna to be pointed based at least in part on the determined ground footprint of the beam.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 26, 2019
    Inventors: Mark PASSLER, Graham K. SMITH, Steven M. ROMANOW
  • Publication number: 20190056472
    Abstract: A method and receiver for determination of angle of arrival in one or two planes of a beam received at an antenna array comprising at least two pairs of antenna elements are provided. In some embodiments, a method includes computing a pair of difference signals, each difference signal being computed from signals from a different one of the at least two pairs of antenna elements. The method further includes determining a directional angle of arrival of the beam in one plane based on the pair of difference signals.
    Type: Application
    Filed: August 6, 2018
    Publication date: February 21, 2019
    Inventors: Graham K. Smith, Mark Passler
  • Publication number: 20180332435
    Abstract: A method is disclosed that relates to estimating the temporal location of mobile ground based Wi-Fi stations by monitoring a multitude of ground based access points, using an airborne Wi-Fi monitoring device. The airborne monitoring station first identifies and locates ground based access points within the area of interest. The airborne monitoring station monitors the transmission of the ground based stations and access points in the said networks, in particular the probe response management frames, recording the access point and station addresses and the time of reception. The transmissions contain an address of a corresponding ground-based access point and the address of the ground-based mobile station. The airborne monitoring station then matches all the times of the probe responses corresponding to the each station address and together with the location of the access points computes the likely temporal track for each station.
    Type: Application
    Filed: March 22, 2018
    Publication date: November 15, 2018
    Inventors: Mark PASSLER, Graham K. Smith
  • Patent number: 9921294
    Abstract: A passive geo-location scheme of Wi-Fi access points is described using one or more mobile measuring stations. The methods and arrangements herein relate to, in one embodiment, using the TSF timer in beacons received by the measuring station, the reported TODs, the TOAs measured by the measuring station and synchronization between the timers of the wireless device and the measuring station. The synchronization includes applying a factor ? for correcting the timer associated with the measuring station when the measuring station receives the beacons, applying a factor ? for correcting a ratio of timer rates between the timer associated with the wireless device and the timer associated with the measuring station, and applying a factor ? for correcting changes in a timer rate ratio between the first timer associated with the wireless device and the timer associated with the measuring station.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: March 20, 2018
    Assignee: SR Technologies, Inc.
    Inventor: Mark Passler