Patents by Inventor Mark R. Amato

Mark R. Amato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200038681
    Abstract: The invention comprises a method and apparatus for scanning charged particles in a cancer therapy system, comprising the steps of: (1) providing a first and second dipole magnet system and a gap, the gap comprising a common gap length, along a path of the charged particles, within both the first and second dipole magnet systems, the gap comprising a progressively increasing x/y-plane cross-section area from an entrance area of the charged particles into the double dipole magnet system to an exit area of the double dipole magnet system, the x/y-plane perpendicular to a z-axis from a center of the entrance area to a center of the exit area; (2) scanning the positively charged particles along a first axis of the x/y-plane using the first dipole magnet system; and (3) scanning the positively charged particles along a second axis of the x/y-plane using the second dipole magnet system.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Faye Hendley Elgart, Nick Ruebel, Mark R. Amato, Nandish Desai, W. Davis Lee
  • Patent number: 10548551
    Abstract: The invention comprises a method or apparatus for tomographically imaging a sample, such as a tumor of a patient, using positively charged particles. Position, energy, and/or vectors of the positively charged particles are determined using a plurality of scintillators, such as layers of chemically distinct scintillators where each chemically distinct scintillator emits photons of differing wavelengths upon energy transfer from the positively charged particles. Knowledge of position of a given scintillator type and a color of the emitted photon from the scintillator type allows a determination of residual energy of the charged particle energy in a scintillator detector. Optionally, a two-dimensional detector array additionally yields x/y-plane information, coupled with the z-axis energy information, about state of the positively charged particles.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: February 4, 2020
    Inventors: W. Davis Lee, Mark R. Amato
  • Patent number: 10518109
    Abstract: The invention comprises a method and apparatus for determining a radiation beam treatment path to a tumor, comprising the steps of: (1) delivering charged particles from an accelerator, along a first beam transport path, through an output nozzle, and along a treatment path to the tumor relative to a calibrated reference beam path from the output nozzle toward a patient position and (2) prior to the step of delivering, a main controller verifying an unobstructed linear path of the treatment path using a set of fiducial indicators positioned at least: on a first element physically affixed and co-movable with the output nozzle and on a moveable object in the treatment room. Optionally, voxels of the treatment beam path and potentially obstructing objects are defined in the treatment room using an axis system relative to the calibrated reference beam path and a reference beam point.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: December 31, 2019
    Inventors: Jillian Reno, Susan L. Michaud, Nick Ruebel, Mark R. Amato, W. Davis Lee, James P. Bennett
  • Publication number: 20190351259
    Abstract: The invention comprises a method and apparatus for reducing a kinetic energy of positively charged particles, comprising the steps of: (1) transporting the positively charged particles from an accelerator into an exit nozzle system along a beam line; (2) providing a first chamber of the exit nozzle system, the first chamber comprising: an incident side comprising an incident aperture, an exit side comprising an exit aperture, and a beam path of the positively charged particles from the incident aperture to the exit aperture; (3) filling the beam path in the chamber with a liquid; and (4) using the liquid to reduce the kinetic energy of the positively charged particles. The kinetic energy dissipater is optionally used in combination with a proton therapy cancer treatment system and/or a proton tomography imaging system.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: W. Davis Lee, Mark R. Amato
  • Publication number: 20190351258
    Abstract: The invention comprises a method and apparatus for steering/scanning charged particles, comprising: a double dipole scanning system, comprising: (1) a beam path chamber comprising an entrance side and an exit side, the entrance side comprising a smaller area than the exit side; (2) a first dipole magnet, the first dipole magnet comprising a first coil and a third coil on first opposite sides of the beam path chamber; and (3) a second dipole magnet, the second dipole magnet comprising a second coil and a fourth coil on second opposite sides of the beam path chamber, the beam path chamber further comprising a truncated square/rectangle pyramid shape, the smaller entrance side of the charged particles comprising a top of the truncated pyramid shape, the exit side of the charged particles comprising a larger bottom of the truncated pyramid shape.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Faye Hendley Elgart, Nick Ruebel, Mark R. Amato, Nandish Desai, W. Davis Lee
  • Patent number: 10376717
    Abstract: The invention comprises a method and apparatus for treating a tumor using positively charged particles having passed through an intervening object, comprising the steps of: predetermining an energy reduction of the positively charged particles resultant from the positively charged particles traversing the intervening object along a beam treatment path as a function of relative rotation of the patient and the beam treatment path; generating a radiation treatment plan adjusting energy of the positively charged particles delivered from the synchrotron to the intervening object to yield a desired beam treatment energy of the positively charged particles entering the tumor after compensating for the energy reduction; and optionally detecting a set of the positively charged particles after traversing the intervening object to yield a signal, where the signal is used with knowledge of energy of the positively charged particles exiting the synchrotron to pre-determine the energy reduction along the beam treatment pat
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: August 13, 2019
    Inventors: James P. Bennett, Susan L. Michaud, Mark R. Amato, Jillian Reno, W. Davis Lee, Nick Ruebel
  • Patent number: 10357666
    Abstract: The invention comprises a fiducial marker—fiducial detector based treatment room position determination/positioning system apparatus and method of use thereof. A set of fiducial markers and fiducial detectors are used to mark/determine relative position of static and/or moveable objects in a treatment room using photons passing from the markers to the detectors. Further, position and orientation of at least one of the objects is calibrated to a reference line, such as a zero-offset beam treatment line passing through an exit nozzle, which yields a relative position of each fiducially marked object in the treatment room. Treatment calculations are subsequently determined using the reference line and/or points thereon. The treatment calculations are optionally and preferably performed without use of an isocenter point, such as a central point about which a treatment room gantry rotates, which eliminates mechanical errors associated with the isocenter point being an isocenter volume in practice.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 23, 2019
    Inventors: W. Davis Lee, Mark R. Amato, Nick Ruebel, Jillian Reno, Susan L. Michaud
  • Patent number: 10279198
    Abstract: A scintillation material is longitudinally packaged in a circumferentially surrounding sheath, where the sheath has a lower index of refraction than the scintillation material, to form a scintillation optic or scintillation fiber optic. The scintillation material yields secondary photons upon passage of a charged particle beam, such as a positively charged residual particle beam having transmitted through a sample. The internally generated secondary photons within the sheath are guided to a detector element by the difference in index of refraction. Multiple scintillation optics are assembled to form a two-dimensional scintillation array coupled to a two-dimensional detector array, such as for use in determination of state of the residual charged particle beam, determination of an exit point of the particle beam from the sample, path of the treatment beam, and/or tomographic imaging.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 7, 2019
    Inventors: W. Davis Lee, Mark R. Amato, Stephen L. Spotts, James P. Bennett
  • Patent number: 10213624
    Abstract: The invention comprises a method and apparatus for tracking and/or imaging impact of a particle beam treating a tumor using one or more imaging systems positionable about the tumor, such as a positron emission tracking and/or imaging system, where resulting tracking/imaging data: dynamically determines a treatment beam position, tracks a history of treatment beam positions, guides the treatment beam, and/or images a tumor before, during, and/or after treatment with the charged particle beam.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: February 26, 2019
    Inventors: W. Davis Lee, Mark R. Amato, Susan L. Michaud
  • Patent number: 10188877
    Abstract: The invention comprises a fiducial marker—fiducial detector based treatment room position determination/positioning system apparatus and method of use thereof. A set of fiducial markers and fiducial detectors are used to mark/determine relative position of static and/or moveable objects in a treatment room using photons passing from the markers to the detectors. Further, position and orientation of at least one of the objects is calibrated to a reference line, such as a zero-offset beam treatment line passing through an exit nozzle, which yields a relative position of each fiducially marked object in the treatment room. Treatment calculations are subsequently determined using the reference line and/or points thereon. The treatment calculations are optionally and preferably performed without use of an isocenter point, such as a central point about which a treatment room gantry rotates, which eliminates mechanical errors associated with the isocenter point being an isocenter volume in practice.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: January 29, 2019
    Inventors: W. Davis Lee, Mark R. Amato, Nick Ruebel, Jillian Reno, Susan L. Michaud
  • Publication number: 20190021684
    Abstract: The invention comprises a method and apparatus for treating a tumor, comprising the steps of: (1) a main controller sequentially delivering charged particles from a synchrotron along a first beam transport line, through a nozzle system, and to the tumor according to a current version of the radiation treatment plan; (2) concurrent with the step of delivering, generating an image of the tumor using an imaging system; (3) the main controller automatically generating an updated version of the radiation treatment plan using the image, the updated version of the radiation treatment plan becoming the current version of the radiation treatment plan; and (4) repeating the steps of: delivering grouped bunches of the charged particles, generating an image of the tumor, and automatically generating the updated or current version of the radiation treatment plan with optional intervening doctor approval.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 24, 2019
    Inventors: Nick Ruebel, Mark R. Amato, Susan L. Michaud, James P. Bennett, Jillian Reno, W. Davis Lee
  • Patent number: 10179250
    Abstract: The invention comprises a method and apparatus for treating a tumor, comprising the steps of: (1) a main controller implementing an initial radiation treatment plan, as a current radiation treatment plan, using positively charged particles delivered from a synchrotron, along a beam transport line, through a nozzle system proximate the treatment room, and into the tumor; (2) concurrent with the step of implementing, imaging the tumor, such as with protons, to generate a current image; (3) upon detection of movement of the tumor relative to surrounding constituents of the patient using the current image, the main controller, using computer implemented code, automatically generating an updated treatment plan, the updated treatment plan becoming the current radiation treatment plan; and (4) repeating the steps of implementing, imaging, and generating an updated treatment plan at least n times, where n is a positive integer of at least one.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: January 15, 2019
    Inventors: Nick Ruebel, Susan L. Michaud, Mark R. Amato, Jillian Reno, W. Davis Lee, James P. Bennett
  • Patent number: 10112060
    Abstract: The invention comprises an apparatus and method of use thereof for extracting ions from an ion source, such as for use in cancer treatment or tomographic imaging. The extraction apparatus uses a triode extraction system, with the ion source and/or first electrode held at a first potential; an extraction electrode held at a second potential; and a gating electrode, positioned between the ion source and the extraction electrode, oscillating and/or alternating between a first suppression potential proximate that of the ion source potential and a second extraction potential between the ion source potential and the extraction electrode potential. Optionally, the ion source comprises an electron cyclotron resonance ion source.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: October 30, 2018
    Inventors: W. Davis Lee, Mark R. Amato, James P. Bennett
  • Patent number: 10081861
    Abstract: Methods for the selective processing of the outer portion of a workpiece are disclosed. The outer portion is processed by directing an ion beam toward the workpiece, where the ion beam extends beyond the outer edge of the workpiece at two locations. The workpiece is then rotated relative to the ion beam about the center so that all regions of the outer portion are exposed to the ion beam. The workpiece may be rotated an integral number of rotations. The ion beam may perform any process, such as ion implantation, etching or deposition. The outer portion may be an annular ring having an outer diameter equal to that of the workpiece and having a width of 1 to 30 millimeters. The rotation of the workpiece may be aligned with a notch on the outer edge of the workpiece.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: September 25, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Morgan D. Evans, Daniel Distaso, Stanislav S. Todorov, Mark R. Amato, William Davis Lee, Jillian Reno
  • Patent number: 10037863
    Abstract: The invention comprises a method and apparatus for slowing positively charged particles, comprising the steps of: (1) transporting the positively charged particles from an accelerator, along a beam transport line, and into a nozzle system; (2) placing a first liquid in a first chamber in a beam path of the positively charged particles; (3) placing a second liquid in a second chamber in the beam path of the positively charged particles; (4) moving the first and second chamber with the nozzle system; (5) slowing the positively charged particles using the first liquid and the second liquid; (6) moving the first chamber in a first direction to yield a longer first pathlength of the positively charged particles through the first chamber; and (7) moving the second chamber opposite the first direction to yield a longer second pathlength of the positively charged particles through the second chamber.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: July 31, 2018
    Inventors: Mark R. Amato, W. Davis Lee
  • Publication number: 20180200539
    Abstract: The invention comprises a method and apparatus for treating a tumor of a patient, comprising the steps of: (1) using a first treatment beam comprising electrons in a cancer therapy system used to treat the tumor, the electrons passing along a beam transport path from a synchrotron, through a beam transport system, through an exit nozzle, and toward the tumor and (2) using a second treatment beam to treat the tumor, the second treatment beam both generated using the synchrotron and penetrating into the tumor, where the second treatment beam comprises at least one of: (1) cations and (2) secondary X-rays emitted resultant from energy transfer from the electrons, where the cations are optionally used to image the tumor of the patient.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: Mark R. Amato, Scott Penfold, W. Davis Lee
  • Publication number: 20180200538
    Abstract: The invention comprises a method and apparatus for treating a tumor of a patient with charged particles, comprising the step of developing a multi-modality treatment plan, the multi-modality treatment plan directing: (1) use of a first beam type to treat a first volume of the tumor, the first beam type a first mass per particle and (2) use of a second beam type to treat a second volume of the tumor, the second beam type comprising a second mass per particle, where the second mass per particle is at least ten percent different than the first mass per particle and the second volume differs from the first volume. The multi-modality treatment plan is optionally formed by selectively merging treatment plans using the respective particle types or is developed using properties of the multiple particle types.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: James P. Bennett, W. Davis Lee, Mark R. Amato
  • Publication number: 20180185673
    Abstract: The invention comprises a method and apparatus for imaging and/or treating a tumor of a patient using multiple ion types, such as a cations with one, two, or more mass-to-charge ratios and/or electrons, where the multiple ion types are accelerated, at separate times, using a single accelerator, and the multiple ion types are used to treat different depths into a tumor of a patient, where the patient is optionally maintained in a single treatment position relative to a patient positioning system during treatment.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: W. Davis Lee, Mark R. Amato, Scott Penfold, Stephen L. Spotts
  • Publication number: 20180178041
    Abstract: The invention comprises a fiducial marker—fiducial detector based treatment room position determination/positioning system apparatus and method of use thereof. A set of fiducial markers and fiducial detectors are used to mark/determine relative position of static and/or moveable objects in a treatment room using photons passing from the markers to the detectors. Further, position and orientation of at least one of the objects is calibrated to a reference line, such as a zero-offset beam treatment line passing through an exit nozzle, which yields a relative position of each fiducially marked object in the treatment room. Treatment calculations are subsequently determined using the reference line and/or points thereon. The treatment calculations are optionally and preferably performed without use of an isocenter point, such as a central point about which a treatment room gantry rotates, which eliminates mechanical errors associated with the isocenter point being an isocenter volume in practice.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 28, 2018
    Inventors: W. Davis Lee, Mark R. Amato, Nick Ruebel, Jillian Reno, Susan L. Michaud
  • Publication number: 20180178040
    Abstract: The invention comprises a method and apparatus for using a turning magnet of an accelerator of a cancer therapy system, the accelerator comprising first magnet coils and second correction coils wound about a magnet core where: (1) at a first time, the second correction coils are used to correct a magnetic field, resultant from the first magnet coils, used to turn cations and (2) at a second time, after reversing polarity of the correction coils, the correction coils are used to turn anions and/or electrons, the cations and electrons used to treat a tumor of a patient positioned in a treatment position relative to a treatment beam from the accelerator during the first and second time periods.
    Type: Application
    Filed: February 21, 2018
    Publication date: June 28, 2018
    Inventors: Scott Penfold, Mark R. Amato, W. Davis Lee