Patents by Inventor Mark R. Kozlowski

Mark R. Kozlowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230099188
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 30, 2023
    Inventors: Mark R. Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy Alexander Dixon, Anshu Ajit Pradhan, Robert Tad Rozbicki
  • Patent number: 6518539
    Abstract: The present invention provides a system that mitigates the growth of surface damage in an optic. Damage to the optic is minimally initiated. In an embodiment of the invention, damage sites in the optic are initiated, located, and then treated to stop the growth of the damage sites. The step of initiating damage sites in the optic includes a scan of the optic using a laser to initiate defects. The exact positions of the initiated sites are identified. A mitigation process is performed that locally or globally removes the cause of subsequent growth of the damaged sites.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: February 11, 2003
    Assignee: The Regents of the University of California
    Inventors: Lloyd A. Hackel, Alan K. Burnham, Bernardino M. Penetrante, Raymond M. Brusasco, Paul J. Wegner, Lawrence W. Hrubesh, Mark R. Kozlowski, Michael D. Feit
  • Publication number: 20020046998
    Abstract: The present invention provides a system that mitigates the growth of surface damage in an optic. Damage to the optic is minimally initiated. In an embodiment of the invention, damage sites in the optic are initiated, located, and then treated to stop the growth of the damage sites. The step of initiating damage sites in the optic includes a scan of the optic using a laser to initiate defects. The exact positions of the initiated sites are identified. A mitigation process is performed that locally or globally removes the cause of subsequent growth of the damaged sites.
    Type: Application
    Filed: September 7, 2001
    Publication date: April 25, 2002
    Applicant: The Regents of the University of California
    Inventors: Lloyd A. Hackel, Alan K. Burnham, Bernardino M. Penetrante, Raymond M. Brusasco, Paul J. Wegner, Lawrence W. Hrubesh, Mark R. Kozlowski, Michael D. Feit
  • Patent number: 6099389
    Abstract: A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants.
    Type: Grant
    Filed: October 5, 1998
    Date of Patent: August 8, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Michael A. Nichols, David M. Aikens, David W. Camp, Ian M. Thomas, Craig Kiikka, Lynn M. Sheehan, Mark R. Kozlowski
  • Patent number: 5472748
    Abstract: The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: December 5, 1995
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: C. Robert Wolfe, Mark R. Kozlowski, John H. Campbell, Michael Staggs, Frank Rainer