Patents by Inventor Mark S. Blumenkranz

Mark S. Blumenkranz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9101448
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 11, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9095415
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye issue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 4, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20150141968
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 21, 2015
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9005099
    Abstract: Delivery systems and methods for delivering riboflavin (R/F) and UVA irradiation to the sclera are disclosed. The R/F is delivered and then activated with UVA irradiation through the use of LEDs or optical fibers, thereby causing cross-linking of the collagen tissue. Delivery systems include implantable structures which provide surfaces that conform to the sclera. The delivery systems include various types of structures for delivery of R/F onto the sclera surface. Additionally, the delivery systems include UVA sources which provide irradiation of R/F in sclera collagen tissue.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: April 14, 2015
    Assignee: Seros Medical, LLC
    Inventors: Mark S. Blumenkranz, Edward E. Manche, Satish V. Herekar, Donald J. Eaton
  • Publication number: 20150038952
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20150038951
    Abstract: A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20140316386
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye issue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: February 19, 2014
    Publication date: October 23, 2014
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20140228827
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 14, 2014
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20140228826
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 14, 2014
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8709001
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 29, 2014
    Assignee: Optimedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8690862
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 8, 2014
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, Dan E. Andersen, David H. Mordaunt
  • Patent number: 8616216
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: December 31, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Patent number: 8500724
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: August 6, 2013
    Assignee: Optimedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8425497
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: April 23, 2013
    Assignee: Optimedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8409180
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: April 2, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Patent number: 8403921
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: March 26, 2013
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palankar, Mark S. Blumenkranz, Dan E. Andersen, David H. Mordaunt
  • Patent number: 8394084
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: March 12, 2013
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palankar, Mark S. Blumenkranz, Dan E. Andersen, David H. Mordaunt
  • Publication number: 20130023864
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: August 17, 2012
    Publication date: January 24, 2013
    Applicant: OptiMedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20120316545
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 13, 2012
    Applicant: OptiMedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20120209051
    Abstract: Delivery systems and methods for delivering riboflavin (R/F) and UVA irradiation to the sclera are disclosed. The R/F is delivered and then activated with UVA irradiation through the use of LEDs or optical fibers, thereby causing cross-linking of the collagen tissue. Delivery systems include implantable structures which provide surfaces that conform to the sclera. The delivery systems include various types of structures for delivery of R/F onto the sclera surface. Additionally, the delivery systems include UVA sources which provide irradiation of R/F in sclera collagen tissue.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 16, 2012
    Applicant: Seros Medical, LLC
    Inventors: Mark S. Blumenkranz, Edward E. Manche, Satish V. Herekar, Donald J. Eaton