Patents by Inventor Mark Shi Wang

Mark Shi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10811158
    Abstract: A multi-mirror laser sustained plasma broadband light source is disclosed. The light source may include a gas containment structure for containing a gas. The light source includes a pump source configured to generate pump illumination and a first reflector element configured to direct a portion of the pump illumination into the gas to sustain a plasma. The first reflector is configured to collect a portion of broadband light emitted from the plasma. The light source also includes one or more additional reflector elements positioned opposite of the first reflector. The one or more additional reflector elements are configured to reflect unabsorbed pump illumination and broadband light uncollected by the first reflector element back to the plasma.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: October 20, 2020
    Assignee: KLA Corporation
    Inventors: Qibiao Chen, Mark Shi Wang
  • Patent number: 10194108
    Abstract: Pixel aperture size adjustment in a linear sensor is achieved by applying more negative control voltages to central regions of the pixel's resistive control gate, and applying more positive control voltages to the gate's end portions. These control voltages cause the resistive control gate to generate an electric field that drives photoelectrons generated in a selected portion of the pixel's light sensitive region into a charge accumulation region for subsequent measurement, and drives photoelectrons generated in other portions of the pixel's light sensitive region away from the charge accumulation region for subsequent discard or simultaneous readout. A system utilizes optics to direct light received at different angles or locations from a sample into corresponding different portions of each pixel's light sensitive region.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: January 29, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, John Fielden, David L. Brown, Jingjing Zhang, Keith Lyon, Mark Shi Wang
  • Patent number: 10060884
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. The predetermined spacing can be a scan length or an integral number of scan lengths. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: August 28, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Publication number: 20180070040
    Abstract: Pixel aperture size adjustment in a linear sensor is achieved by applying more negative control voltages to central regions of the pixel's resistive control gate, and applying more positive control voltages to the gate's end portions. These control voltages cause the resistive control gate to generate an electric field that drives photoelectrons generated in a selected portion of the pixel's light sensitive region into a charge accumulation region for subsequent measurement, and drives photoelectrons generated in other portions of the pixel's light sensitive region away from the charge accumulation region for subsequent discard or simultaneous readout. A system utilizes optics to direct light received at different angles or locations from a sample into corresponding different portions of each pixel's light sensitive region.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Yung-Ho Alex Chuang, John Fielden, David L. Brown, Jingjing Zhang, Keith Lyon, Mark Shi Wang
  • Patent number: 9860466
    Abstract: Pixel aperture size adjustment in a linear sensor is achieved by applying more negative control voltages to central regions of the pixel's resistive control gate, and applying more positive control voltages to the gate's end portions. These control voltages cause the resistive control gate to generate an electric field that drives photoelectrons generated in a selected portion of the pixel's light sensitive region into a charge accumulation region for subsequent measurement, and drives photoelectrons generated in other portions of the pixel's light sensitive region away from the charge accumulation region for subsequent discard or simultaneous readout. A system utilizes optics to direct light received at different angles or locations from a sample into corresponding different portions of each pixel's light sensitive region.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: January 2, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, John Fielden, David L. Brown, Jingjing Zhang, Keith Lyon, Mark Shi Wang
  • Publication number: 20160334342
    Abstract: Pixel aperture size adjustment in a linear sensor is achieved by applying more negative control voltages to central regions of the pixel's resistive control gate, and applying more positive control voltages to the gate's end portions. These control voltages cause the resistive control gate to generate an electric field that drives photoelectrons generated in a selected portion of the pixel's light sensitive region into a charge accumulation region for subsequent measurement, and drives photoelectrons generated in other portions of the pixel's light sensitive region away from the charge accumulation region for subsequent discard or simultaneous readout. A system utilizes optics to direct light received at different angles or locations from a sample into corresponding different portions of each pixel's light sensitive region.
    Type: Application
    Filed: May 12, 2016
    Publication date: November 17, 2016
    Inventors: Yung-Ho Alex Chuang, John Fielden, David L. Brown, Jingjing Zhang, Keith Lyon, Mark Shi Wang
  • Publication number: 20160290971
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. The predetermined spacing can be a scan length or an integral number of scan lengths. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 6, 2016
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Patent number: 9395340
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 19, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Patent number: 9239295
    Abstract: Methods and systems for variable polarization wafer inspection are provided. One system includes one or more polarizing components position in one or more paths of light scattered from a wafer and detected by one or more channels of an inspection system. The polarizing component(s) are configured to have detection polarization(s) that are selected from two or more polarization settings for the polarizing component(s).
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: January 19, 2016
    Assignee: KLA-Tencor Corp.
    Inventors: Xianzhao Peng, Mark Shi Wang, Grace Hsiu-Ling Chen
  • Publication number: 20130265577
    Abstract: Methods and systems for variable polarization wafer inspection are provided. One system includes one or more polarizing components position in one or more paths of light scattered from a wafer and detected by one or more channels of an inspection system. The polarizing component(s) are configured to have detection polarization(s) that are selected from two or more polarization settings for the polarizing component(s).
    Type: Application
    Filed: April 5, 2013
    Publication date: October 10, 2013
    Applicant: KLA-Tencor Corporation
    Inventors: Xianzhao Peng, Mark Shi Wang, Grace Hsiu-Ling Chen
  • Patent number: 6621593
    Abstract: An aspheric optical element corrects the non-linearity of the scan line in a ROS. The optical element can be either the wobble correction mirror, the last optical element in the ROS, or the output window, subsequent to the ROS. The optical element deflects the scan beam to cancel the non-linearity of the scan line caused by the residual errors in the ROS lens design. The aspheric optical element can also correct scan line bow.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: September 16, 2003
    Assignee: Xerox Corporation
    Inventors: Mark Shi Wang, Chia-di Lee
  • Publication number: 20030058333
    Abstract: A strip neutral density filter varies the Gaussian intensity profile of the modulated light beam in an overfilled raster output scanner to provide a generally uniform intensity light beam spot at the photosensitive medium. The strip neutral density filter is positioned in the light beam path between the emitting laser source and the rotating polygon mirror of the raster output scanner.
    Type: Application
    Filed: September 24, 2001
    Publication date: March 27, 2003
    Applicant: Xerox Corporation
    Inventor: Mark Shi Wang
  • Patent number: 6381209
    Abstract: The multi-channel optical head for recording and reading optical storage data has a write laser array for generating a plurality of write beams and a read laser array for generating a plurality of read beams. The write beams and the read beams share a common optical path with a first broadband non-polarizing beam splitter which directs the beams towards the optical recording medium or to a power detector and with a second broadband non-polarizing beam splitter which directs the write beams and the read beams to the optical recording medium and which directs the read beams, after retroreflection and information modulation from the optical recording medium, to be split by a beam splitter and focused onto a detector to provide focusing information and another detector which detects its intensity to read data and provides tracking information.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: April 30, 2002
    Assignee: Xerox Corporation
    Inventors: Russell B. Rauch, Mark Shi Wang
  • Patent number: 6373809
    Abstract: The multi-channel optical head for recording and reading optical storage data has a write laser array for generating a plurality of write beams and a read laser array for generating a plurality of read beams. The write beams and the read beams share a common optical path with a first broadband non-polarizing beam splitter which directs the beams towards the optical recording medium or to a power detector and with a second broadband non-polarizing beam splitter which directs the write beams and the read beams to the optical recording medium and which directs the read beams, after retroreflection and information modulation from the optical recording medium, to be split by a beam splitter and focused onto a detector to provide focusing information and another detector which detects its intensity to read data and provides tracking information.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: April 16, 2002
    Assignee: Xerox Corporation
    Inventors: Russell B. Rauch, Mark Shi Wang
  • Patent number: 6292285
    Abstract: A single rotating polygon mirror with v-shaped facets having upper and lower reflective facet surfaces reflects and separates dual beams to two photoreceptors in a ROS. Each facet surface will have a different tilt angle. The two independently modulated beams will share common optical elements between the light sources and the mirror and may share a common f-theta scan lens. Two sets of two beams can be incident upon the facets on opposite sides of the rotating polygon mirror. The polygon mirror facet can also have three or four reflective facet surfaces to reflect and separate three or four independently modulated beams to three or four different photoreceptors.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: September 18, 2001
    Assignee: Xerox Corporation
    Inventors: Mark Shi Wang, Vinod Mirchandani
  • Patent number: 6219168
    Abstract: A single rotating polygon mirror with adjacent facets having different tilt angles reflects and splits the scanning beam to multiple photoreceptors in a raster output scanning (ROS) system. The mirror can have two or four alternating facets with different tilt angles. Two different light beams form two different light sources can be reflected and split from the polygon mirror contemporaneously to multiple photoreceptors. The split beams from the polygon mirror facets can share a common f-theta scan lens.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: April 17, 2001
    Assignee: Xerox Corporation
    Inventor: Mark Shi Wang
  • Patent number: 5914477
    Abstract: A barcode scanner includes a light source for producing a scan line of light on a 2-D barcode along one of the two axes thereof. The scan line is scanned across the barcode along the other axis to effect a scanning band extending over the barcode in both of the two axes. Light reflected from the barcode is collected with a photodetector array to produce signals which are processed for decoding the barcode in both axes.
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: June 22, 1999
    Assignee: NCR Corporation
    Inventor: Mark Shi Wang