Patents by Inventor Mark Sowa

Mark Sowa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190284689
    Abstract: An improved Plasma Enhanced Atomic Layer Deposition (PEALD) system and related operating methods are disclosed. A vacuum reaction chamber includes a vacuum system that separates a first outflow from the reaction chamber, comprising unreacted first precursor, from a second outflow from the reaction chamber, comprising second precursor and any reaction by products from the reaction of the second precursor with the coating surfaces. A trap, including trap material surfaces, is provided to remove first precursor from the first outflow when the first precursor reacts with the trap material surfaces. When the second precursor includes a plasma generated material, the second precursor is not passed through the trap. An alternate second precursor source injects a suitable second precursor into the trap to complete a material deposition layer onto the trap surfaces thereby preparing the trap material surfaces to react with the first precursor on the next material deposition cycle.
    Type: Application
    Filed: June 3, 2019
    Publication date: September 19, 2019
    Inventors: Mark Sowa, Robert Kane, Michael Sershen
  • Patent number: 10351950
    Abstract: An improved Plasma Enhanced Atomic Layer Deposition (PEALD) system and related operating methods are disclosed. A vacuum reaction chamber includes a vacuum system that separates a first outflow from the reaction chamber, comprising unreacted first precursor, from a second outflow from the reaction chamber, comprising second precursor and any reaction by products from the reaction of the second precursor with the coating surfaces. A trap, including trap material surfaces, is provided to remove first precursor from the first outflow when the first precursor reacts with the trap material surfaces. When the second precursor includes a plasma generated material, the second precursor is not passed through the trap. An alternate second precursor source injects a suitable second precursor into the trap to complete a material deposition layer onto the trap surfaces thereby preparing the trap material surfaces to react with the first precursor on the next material deposition cycle.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: July 16, 2019
    Assignee: Ultratech, Inc.
    Inventors: Mark Sowa, Robert Kane, Michael Sershen
  • Publication number: 20170194204
    Abstract: Through via holes are prepared for metallization using ALD and PEALD processing. Each via is coated with a titanium nitride barrier layer having a thickness ranging from 20 to 200 ?. A ruthenium sealing layer is formed over the titanium nitride barrier layer wherein the sealing layer is formed without oxygen to prevent oxidation of the titanium nitride barrier layer. A ruthenium nucleation layer is formed over the sealing layer wherein the nucleation layer is formed with oxygen in order to oxidize carbon during the application of the Ru nucleation layer. The sealing layer is formed by a PEALD method using plasma excited nitrogen radicals instead of oxygen.
    Type: Application
    Filed: August 27, 2014
    Publication date: July 6, 2017
    Applicant: Ultratech, Inc.
    Inventor: Mark Sowa
  • Publication number: 20160281223
    Abstract: An improved Plasma Enhanced Atomic Layer Deposition (PEALD) system and related operating methods are disclosed. A vacuum reaction chamber includes a vacuum system that separates a first outflow from the reaction chamber, comprising unreacted first precursor, from a second outflow from the reaction chamber, comprising second precursor and any reaction by products from the reaction of the second precursor with the coating surfaces. A trap, including trap material surfaces, is provided to remove first precursor from the first outflow when the first precursor reacts with the trap material surfaces. When the second precursor includes a plasma generated material, the second precursor is not passed through the trap. An alternate second precursor source injects a suitable second precursor into the trap to complete a material deposition layer onto the trap surfaces thereby preparing the trap material surfaces to react with the first precursor on the next material deposition cycle.
    Type: Application
    Filed: November 21, 2014
    Publication date: September 29, 2016
    Applicant: Ultratech, Inc.
    Inventors: Mark Sowa, Robert Kane, Michael Sershen